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ABSTRACT
This paper proposes a scheme to reduce big graphs to small graphs.
It contracts obsolete parts, stars, cliques and paths into supernodes.
The supernodes carry a synopsis SQ for each query class Q to ab-
stract key features of the contracted parts for answering queries
of Q. The contraction scheme provides a compact graph represen-
tation and prioritizes up-to-date data. Better still, it is generic and
lossless. We show that the same contracted graph is able to support
multiple query classes at the same time, no matter whether their
queries are label-based or not, local or non-local. Moreover, exist-
ing algorithms for these queries can be readily adapted to compute
exact answers by using the synopses when possible, and decontract-
ing the supernodes only when necessary. As a proof of concept, we
show how to adapt existing algorithms for subgraph isomorphism,
triangle counting and shortest distance to contracted graphs. We
also provide an incremental contraction algorithm in response to
updates. We experimentally verify that on average, the contraction
scheme reduces graphs by 71.2%, and improves the evaluation of
these queries by 1.53, 1.42 and 2.14 times, respectively.
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1 INTRODUCTION
There has been prevalent use of graphs in artificial intelligence,
knowledge bases, search, recommendation, business transactions,
fraud detection and social network analysis. Graphs in the real
world are often big, e.g., transaction graphs in e-commerce compa-
nies easily have billions of nodes and trillions of edges. Worse still,
graph computations are often costly, e.g., graph pattern matching
via subgraph isomorphism is intractable. These highlight the need
for developing techniques for speeding up graph computations.
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There has been a host of work on the subject, either by making
graphs compact, e.g., graph summarization [37] and compression
[7], or speeding up query answering by building indices [46]. The
prior work typically targets a specific class of queries, e.g., query-
preserving compression [22] and 2-hop labeling [13] are for reach-
ability queries. In practice, however, multiple applications often
run on the same graph at the same time. It is infeasible to switch
compression schemes between different applications. It is also too
costly to build indices for each and every query class in use.

Another challenge stems from obsolete data. As a real-life exam-
ple, consider graphs converted from IT databases at a telecommuni-
cation company. The databases were developed in stages over years,
and have a large schema with hundreds of attributes. About 80% of
the attributes were copied from earlier versions and have not been
touched for years. No one can tell what these attributes are for, but
no one has the gut to drop them in the fear of information loss. As
a result, a large bulk of the graphs is obsolete. As another example,
there are a large number of zombie accounts in Twitter. As reported
by The New York Times, 71% of Lady Gaga’s followers are fake or
inactive, and it is 58% for Justin Bieber. The obsolete data incurs
heavy time and space costs, and often obscures query answers.

The challenges give rise to several questions. Is it possible to
find a compact representation of graphs that is generic and lossless?
That is, we want to reduce big graphs to a substantially smaller
form. Moreover, using the same representation, we want to com-
pute exact answers to different classes of queries at the same time.
In addition, can the representation separate up-to-date data from
obsolete components without loss of information? Can we adapt
existing query evaluation algorithms to the compact form, without
the need for redeveloping the algorithms starting from scratch?
Furthermore, can we efficiently and incrementally maintain the
representation in response to updates to the original graphs?

Contributions & organization. This paper proposes a new ap-
proach to tackling these challenges, by extending graph contraction.
(1) A contraction scheme (Section 2).We propose a scheme to reduce
big graphs into smaller ones. It contracts obsolete components, stars,
cliques, paths into supernodes, and prioritizes up-to-date data. For
each query class Q, supernodes carry a synopsis SQ that records
key features needed for answering queries of Q. As opposed to
graph summarization and compression, the scheme is generic and
lossless. A contracted graph retains the same topological structure
for all query classes Q, and the same synopses SQ work for all
queries in the same Q. Only SQ may vary for different classes Q.
(2) Proof of concept (Sections 3). We show that existing query eval-
uation algorithms can be readily adapted to contracted graphs. In
a nutshell, we extend the algorithms to handle supernodes. For a
query Q in Q, we make use of the synopsis SQ of a supernode if
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it carries sufficient information for answering Q , and decontract
the supernode only when necessary. We pick three different query
classes: subgraph isomorphism (SubIso), triangle counting (TriC)
and shortest distance (Dist), based on the following dichotomies:
◦ label-based (SubIso) vs. non-label based (TriC, Dist);
◦ local (SubIso, TriC) vs. non-local (Dist); and
◦ topological constraints (Dist ≺ TriC ≺ SubIso).

We show how easy to adapt existing algorithms for these queries
to contracted graphs, without increasing their complexity. Better
still, all these queries can be answered without decontraction of
topological structures except some supernodes for obsolete parts.
(3) Incremental contraction (Section 4). We develop an incremental
algorithm for maintaining contracted graphs in response to updates
to original graphs, which may change both the topological struc-
tures and timestamps. We show that the algorithm is bounded [44],
i.e., it takes at mostO(|AFF|2) time, where |AFF| is the size of areas
affected by updates, not the size of the entire (possibly big) graph.
(4) Empirical evaluation (Section 5). Using 9 real-life graphs, we ex-
perimentally verify the following. On average, (a) the contraction
scheme reduces graphs by 71.2%. (b) Contraction makes SubIso,
TriC and Dist1.53, 1.42 and 2.14 times faster, respectively. (c) The
total space cost of our contraction scheme for the three accounts for
9.8% of indices for Turboiso [26],HINDEX [43] and PLL [3]. It is 6.1%
when MC [38] and kNN [50] also run on the same graph. The syn-
opses for each take 7.3% of the space. Hence the scheme is scalable
with the number of applications on the same graph. (d) Contracting
obsolete data improves the efficiency of conventional queries and
temporal queries by 1.23 and 1.88 times on average, respectively. (e)
Our (incremental) contraction scheme scales well with graphs and
updates, e.g., taking 103s on graphs with 110M nodes and edges.

We discuss related work in Section 6 and future work in Section 7.

2 A GRAPH CONTRACTION SCHEME
Preliminaries. We start with basic notations. Assume two infinite
sets Θ and Γ for labels and timestamps, respectively.
Graphs. We consider undirected graphs G = (V , E, L,T ), where (a)
V is a finite set of nodes, (b) E ⊆ V × V is a bag of edges, (c) for
each node v ∈ V , L(v) is a label in Θ; and (d)T is a partial function:
for each node v ∈ V , if T (v) is defined, it is a timestamp in Γ that
indicates the time when v or its adjacent edges were last updated.
Queries. A graph query is a computable function from a graph G

to another object, e.g., a Boolean value, a graph, and a relation. For
instance, a graph pattern matching query is a graph pattern Q to
find the set of subgraphs inG that are isomorphic to Q , denoted by
Q(G). Triangle counting is a constant query to find all triangles inG .

A query class Q is a set of queries of the same “type”, e.g., all
graph patterns. We also refer to Q as an application. In practice,
multiple applications run on the same graph G simultaneously.

2.1 Contraction Scheme
A graph contraction scheme is a triple ⟨fC ,S, fD ⟩, where (1) fC is
a contraction function such that given a graph G, Gc = fC (G) is a
graph deduced from G by contracting certain subgraphs H into
supernodes vH ; we refer to H as the subgraph contracted to vH ,

and Gc as the contracted graph of G by fC ; (2) S is a set of synopsis
functions such that for each query class Q in use, there exists
SQ ∈ S that annotates each supernode vH of Gc with a synopsis
SQ (vH ); and (3) fD is a decontraction function that restores each
supernode vH in Gc to its contracted subgraph H .

Example 1: Graph G in Fig. 1(a) is a fraction of Twitter network.
A node denotes a user (u), a tweet (t ), a keyword (k), or a feature
of a user such as id (i), name (n), number of followers (f ) and link
to other account (l). An edge indicates the following: (1) (u,u ′),
a user follows another; (2) (u, t), a user posts a tweet; (3) (t, t ′), a
tweet retweets another; (4) (t,k), a tweet tags a keyword; (5) (k,k ′),
two keywords are highly related; (6) (u,k), a user is interested in
a keyword; or (7) a user has a feature, e.g., (i, l). In G, subgraphs
in dashed rectangles are contracted into supernodes, yielding a
contracted graphGc shown in Fig. 1(b). Synopses SSubIso for SubIso
are shown in Fig. 1(d) and will be elaborated in Section 3.1. 2

Before we formally define fC ,S, fD , observe the following.
(1) The contraction scheme is generic. (a) Note that fC ,Gc and fD
are application independent, i.e., they remain the same no matter
what query classes Q run on the contracted graphs. (b) While S
is application dependent, it is query independent, i.e., all queries
Q ∈ Q use the same synopses annotated by SQ .
(2) The contraction scheme is lossless due to synopses S and de-
contraction function fD . As will be seen in Section 3, an existing
algorithmA for a query classQ can be readily adapted to contracted
graph and computes exact query answers. When evaluating a query
Q ∈ Q at a supernode vH , A checks whether the synopsis SQ (vH )

at vH has enough information for Q ; it uses SQ (vH ) without de-
contraction if so, and decontracts vH by restoring its subgraph via
fD otherwise. No answer to Q is lost or twisted in either case.

We next give the details of fC ,S and fD . We aim to strike a bal-
ance between space cost and query evaluation cost. When a graph
is over-contracted, i.e., when the subgraphs contracted to individual
supernodes are too large or too small, the decontraction cost goes
up although the contracted graph Gc may take less space. More-
over, the more detailed synopses are, the less likely decontraction
is needed, but the higher space overhead is incurred.
(1) Contraction function. Function fC contracts subgraphs inG into
supernodes inGc . To simplify the discussion, we contract the fol-
lowing basic structures as a proof of concept.
(a) Obsolete component: a connected subgraph consisting of nodes
whose timestamps are earlier than threshold t0.
(b) Topological component: clique, star and path as examples.

We contract subgraphs with the number of nodes in the range
[kl ,ku ] to avoid over-contraction (see Section 5 for the choices).

Function fC maps each node v in graph G to a supernode in
contracted graph Gc , which is either vH if v falls in one of the
subgraphs H in (a) or (b), or node v itself otherwise.

In Example 1, function fC maps nodes in each dashed rectangle
to its corresponding supernode, e.g., fC (i1) = fC (n1) = fC (f1) =
fC (l1) = vH1, fC (k1) = . . . = fC (k5) = vH2 and fC (t2) = t2.

Intuitively, obsolete components help us prioritize up-to-date
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Figure 1: Graph contraction

data, and topological ones reduce unnecessary checking when an-
swering queries. As will be seen in Section 5, cliques, stars, paths
and obsolete components contribute 12.9%, 19.4%, 0.5% and 67.2%
to the contraction ratio, and 37.8%, 21.4%, 2.2% and 38.4% to the
speedup of query answering process, respectively.
(2) Contracted graph. For a graphG , its contracted graph by fC isGc
= fC (G) = (Vc , Ec , f

′
C ), where (a) Vc is a set of supernodes mapped

fromG as remarked above; (b) Ec ⊆ Vc ×Vc is a bag of superedges,
where a superedge (vH1,vH2) ∈ Ec if there exist nodes v1 and v2
such that fC (v1) = vH1, fC (v2) = vH2 and (v1,v2) ∈ E; and (c) f ′C is
the reverse function of fC , i.e., f ′C (vH ) = {(v, L(v)) | fC (v) = vH }.

In Example 1, f ′C maps each supernode inGc of Fig. 1(b) back to
the nodes in the corresponding rectangle in Fig. 1(a), e.g., f ′C (vH1)
= {(i1, id), (n1, name), (f1, follower), ( l1, link)}.
(3) Synopsis. For each query class Q in use, a synopsis function SQ
is in S, to retain features necessary for answering queries in Q. For
instance, when Q is the class of graph patterns, at each supernode
vH , SQ (vH ) consists of the type of vH and the most distinguished
features of fD (vH ), e.g., the central node of a star and the sorted
node list of a path. We will give more details about SQ in Section 3.
As will also be seen there, f ′C and synopses SQ taken together often
suffice to answer queries in Q, without decontraction.

Note that not every SQ has to reside in memory. We load SQ to
memory only if its corresponding application Q is in use.
Decontraction. Function fD restores the subgraph contracted to a
supernode. More specifically, for a supernode vH , fD (vH ) restores
the edges between the nodes in f ′C (vH ), i.e., the subgraph induced
by f ′C (vH ). For a superedge (vH1,vH2), fD (vH1,vH2) restores the
edges between f ′C (vH1) and f ′C (vH2), i.e., the bipartite subgraph
with node set f ′C (vH1)∪ f ′C (vH2) and edge set f ′C (vH1)× f ′C (vH2)∩E.

That is, the contracted subgraphs and edges are not dropped.
They can be restored by fD when necessary. In light of fD , the
contraction scheme is guaranteed lossless.

For example, function fD restores the subgraph in Fig. 1(a)
from supernodes, e.g., fD (vH4) is a star with central node u5 and
leaves u1, u2, u3 and u4. It also restores edges from superedges,
e.g., fD (vH2,vH3) = {(t1,k1), (k1,k6), (k2,k6)}.

2.2 Contraction algorithm
We next present an algorithm to contract a given graph G , denoted
as GCon. It first contracts all obsolete data to prioritize up-to-date
data. Each obsolete component is a connected subgraph that con-
tains only nodes with timestamps earlier than a threshold t0. It is
extracted by bounded breadth-first-search (BFS) that stops at non-
obsolete nodes. The remaining nodes are contracted into topological
components such as paths, stars, cliques, or are left as singletons.

Algorithm GCon
Input: A graph G , timestamp threshold t0, range [kl , ku ].
Output: Contraction function fC and decontraction function fD .
1. contract obsolete components;
2. T (G) := ordered set of regular structures of G ;
3. for each t ∈ T (G) do
4. contract topological components ([kl , ku ]) of type t into supernodes;
5. deduce fC and fD ;
6. return fC and fD ;

Figure 2: Algorithm GCon

Different types of graphs have different dominating regular struc-
tures, e.g., cliques are ubiquitous in social networks while paths are
more prevalent in road networks. Hence we identify the order of
topological components to contract for different types of graphs G ,
denote as T (G). That is, we employ a deterministic order to ensure
that important structures are contracted earlier and preserved.

More specifically, (1) for social networks and collaboration
graphs,T (G) = [clique, path, star]; (2) for Web graphs,T (G) = [star,
clique, path]; and (3) for road networks, T (G) = [star, path, clique].

Putting these together, we present the main driver of algorithm
GCon in Fig. 2. Given a graph G, a timestamp threshold t0 and
range [kl ,ku ], it constructs functions fC and fD of the contraction
scheme. It first contracts nodes with timestamps earlier than thresh-
old t0 into obsolete components (line 1). It then recalls the ordered
set T (G) of topological components to contract based on the type
of G (line 2). Next, GCon contracts topological components into
supernodes following the orderT (G), and deduces functions fC and
fD accordingly (lines 3-5). More specifically, it does the following.
(1) For paths, it first extracts intermediate nodes that have only
two neighbors and the neighbors are disconnected. For each path
containing only intermediate nodes, it constructs a path component
along with two neighbors of the endpoints.
(2) For cliques, it repeatedly selects an uncontracted node that
connects to all selected ones, and extracts a clique.
(3) For stars, it first picks a central node. It then repeatedly selects an
uncontracted node as a leaf that is (a) connected to the center and
(b) disconnected from all selected leaves; it makes these into a star.

As remarked earlier, the remaining nodes that cannot be con-
tracted into any component are mapped to themselves by fC .

Example 2: Assume that timestamp threshold t0 for graph G of
Fig. 1(a) is larger than timestamps of nodes i1, n1, f1 and l1, but is
smaller than those of remaining nodes. Algorithm GCon works as
follows. (1) It first triggers bounded BFS, and contracts i1, n1, f1
and l1 into an obsolete component vH1 inGc . (2) SinceG is a social
network, it contracts clique, path and star in this order. It builds a
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clique vH2 with nodes k1, . . . , k5. (3) It finds k7, k8, k9, u1, u7 and
u9 as candidate intermediate nodes for paths, and contracts k7, k8,
k9 into a path vH3 with endpoints k6 and t1. Nodes u1, u7 and u9
cannot make paths due to lower bound kl = 4. (4) It picks u5 and
u10 as central nodes for stars, and makes two stars vH4 and vH5.
(5) Node t2 is left singleton, and is mapped to itself by fC . 2

Complexity. (1) Obsolete components can be contracted in O(|G |)

time via edge-disjoint bounded BFSs; (2) paths can be built in
O(|G |) time; (3) contracting each clique takes O(|G |) time and all
cliques can be handled in O(|G |2); and (4) similarly, all stars can
be contracted in O(|G |2). Thus GCon costs at most O(|G |2) time.

Properties. Observe the following about the contraction scheme.
(1) It is lossless and is able to compute exact query answers. (2)
It is generic and supports multiple applications at the same time.
This is often necessary since on average 10 classes of queries run
on a graph simultaneously in GDB benchmarks [19]. (3) It prior-
itizes up-to-date data by separating it from obsolete data. (4) It
improves performance. (a) As will be seen in Section 5, |Gc | ≪ |G |.
(b) Decontraction is often not needed, e.g., SubIso does not need
to decontract topological components, and for TriC and Dist, even
obsolete supernodes do not need decontraction (Section 3).

2.3 Parallel Contraction Algorithm
We next parallelize algorithm GCon, to speed up the contraction
process. Note that contraction is conducted once offline, and is then
incrementally maintained in response to updates (Section 4).

The idea is to leverage data-partitioned parallelism. Given n
available machines and a graph G, we partition G into fragments
(F1, . . . , Fn ) and distribute them to n machines. All the machines
first runGCon on its local fragment in parallel since after all, each Fi
is a graph itself. They then contract “border nodes”, i.e., nodes with
edges across fragment. We ensure that each node v is contracted
into at most one supernode vH by function fC . More specifically,
we outline the parallel algorithm, denoted by PCon, as follows.
(1) Partition G “evenly” using a parallel edge-cut partitioner, e.g.,
ParMETIS [31], such that each node of G is in a single fragment.
(2) Each machine runs GCon on its local fragment, in parallel.
(3) For each border nodev , ifv is not yet contracted into a supernode,
build its ku -neighbor, i.e., the subgraph with only uncontracted
nodes within ku hops of v . Neighbors are identified in parallel,
coordinated by a machine M0. CoordinatorM0 merges overlapped
neighbors into one, and distributes disjoint ones to n machines.
(4) Each machine contracts its assigned subgraphs in parallel.

When some neighbors in step (3) are too big, they are edge-cut
partitioned again and processed following steps (1) and (2).

One can verify that each node v in G is contracted into at most
one supernode vH . The graph Gc contracted by PCon may be
slightly different from that ofGCon since border nodes may be con-
tracted in different orders. One can fix this by repeating steps (1)-(4)
for each of clique, star and path following the orderT (G). Nonethe-
less, we experimentally find that the differences are not substantial
enough to worth the extra cost. Moreover, the contracted graphs of
PCon are already compact, i.e., they cannot be contracted further.

3 PROOF OF CONCEPT
We next show that existing query evaluation algorithms can be
readily adapted to contracted graphs. As a proof of concept, we pick
three query classes: (1) subgraph isomorphism (labeled queries with
locality); (2) triangle counting (non-labeled queries with locality);
and (3) shortest distance (non-labeled and non-local queries).

Informally, for a query Q ∈ Q, we check whether the synopsis
SQ (vH ) at a supernode vH has enough information for Q ; it uses
SQ (vH ) directly if so; otherwise it decontracts superedges adjacent
tovH or restores the subgraph ofvH via decontraction function fD .
As will be seen shortly, SQ (vH ) often provides enough information
either to process Q at vH as a whole or safely skip vH . Thus it
suffices to answer queries in the three classes by decontracting
superedges, without decontracting any topological components.

3.1 Graph Pattern Matching with Contraction
We start with graph pattern matching in contracted graphs.
Pattern. A graph pattern is a graph Q = (VQ , EQ , LQ ), where (1)
VQ (resp. EQ ) is a set of pattern nodes (resp. edges), and (2) LQ is a
function that assigns a label LQ (u) to each u ∈ VQ .

We also investigate temporal pattern (Q, t), where Q is a pattern
as above and t is a given timestamp (see details shortly).

To simplify the discussion, we consider connected patterns Q .
This said, our algorithm can be adapted to disconnected ones.
Pattern matching. A match of pattern Q in graph G is a subgraph
G ′ = (V ′, E ′, L′,T ′) of G that is isomorphic to Q , i.e., there exists a
bijective function h : VQ → V ′ such that (1) for each node u ∈ VQ ,
LQ (u) = L(h(u)); and (2) e = (u,u ′) is an edge in patternQ iff (if and
only if) (h(u),h(u ′)) is an edge in graph G and LQ (u

′) = L(h(u ′)).
We denote by Q(G) the set of all matches of Q in G.

A match of a temporal pattern (Q, t) in graph G is a match G ′

in Q(G) such that for each node v in G ′, T ′(v) > t , i.e., a match of
(conventional) pattern Q in which all nodes have timestamps later
than t . We denote by Q(G, t) all matches of (Q, t) in G.

The graph pattern matching problem, denoted by SubIso, is to
compute, given a patternQ and a graphG , the setQ(G) of matches.
Similarly, the temporal matching problem is to compute Q(G, t) for
a given (Q, t) and a graph G, denoted by SubIsot .

Note that (1) patterns Q are labeled, i.e., nodes are matched by
labels. Moreover, (2) Q has the locality, i.e., for any match G ′ of Q
in G and any nodes v1 and v2 in G ′, v1 and v2 are within dQ hops
when treatingG ′ as an undirected graph. Here dQ is the diameter of
Q , i.e., the maximum shortest distance between any two nodes inQ .

The decision problem of pattern matching is NP-complete (cf.
[24]); similarly for temporal matching. Several algorithms are in
place for SubIso, notably Turboiso [26] with indices and VF2 [16]
without index. Both can be adapted to contracted graphs.

Theorem 1: Using a linear synopsis function, both Turboiso and
VF2 can be adapted to compute exact answers for SubIso onGc , which
decontract only supernodes of obsolete components and superedges
between supernodes, not topological components. 2

We give a constructive proof for Turboiso, because (1) it is one
of the most efficient algorithms for subgraph isomorphism and is
followed by other SubIso algorithms e.g., [9, 45], and (2) it employs
indexing to reduce redundant matches; we show that the indices
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Algorithm Turboiso
Input: A graph G and a graph pattern Q .
Output: The set Q (G) of all matches of Q in G .
1. Q (G) := ∅; vs := ChooseStartN(Q ,G)

2. Q ′ := RewriteToNEC(Q , vs );
3. for each xs ∈ {x | x ∈ V ∧ L(x ) = L(vs )} do
4. CR := ExploreCR(vs , xs );
5. if CR , ∅ then
6. compute matching order O (xs ,CR);
7. Q (G) := Q (G) ∪ SGSearch((xs , vs ),Q ,Q ′,G ,O );
8. return Q (G);

Figure 3: Algorithm Turboiso

for SubIso can be inherited by contracted graphs, i.e., contraction
and indexing complement each other.

Below we first present synopses for SubIso (Section 3.1.1), which
are the same for both VF2 and Turboiso. We then show how to
adapt Turboiso to contracted graphs (Section 3.1.2).
3.1.1 Contraction for SubIso. The idea of synopses is to store the
types and key features of regular structures so that we could check
pattern matching without decontracting topological components.

The synopsis of a supernode vH for SubIso is defined as follows:
◦ clique: vH .type = clique;
◦ star: vH .type = star, vH .c records its central node;
◦ path: vH .type = path, vH .list = ⟨u1, . . . ,u |vc |⟩, storing all the
nodes on the path in order;

◦ obsolete component: vH .type = obsolete; and
◦ each component maintains vH .t = max{T (v) | v ∈ f ′C (vH )},
i.e., the largest timestamp of its nodes.
For instance, the synopsis SSubIso(vH ) for each supernode vH in

the contracted graph Gc of Fig. 1(b) is given in Fig. 1(d).
The synopses in SSubIso have two properties. (1) Taken with the

reverse function f ′C of fC , the synopsis of a supernode vH suffices
to recover topological component H contracted tovH . For instance,
given the central node and leaf nodes, a star can be uniquely
determined. As a result, no supernode decontraction is needed
for topological components. (2) The synopses can be constructed
during the traversal of G for constructing Gc , as a byproduct.

We remark that the design of synopses needs domain knowledge.
This said, (1) users only need to develop synopses for their applica-
tions in use, not exhaustively for all possible query classes; and (2)
synopsis design is no harder than developing indexing structures.
3.1.2 Subgraph Isomorphism. We first review algorithm Turboiso,
and then show how to adapt Turboiso to contracted graphs.
Turboiso. As shown in Fig. 3, given a graph G and a pattern Q ,
Turboiso computes Q(G) as follows. It first rewrites pattern graph
Q into a treeQ ′ by performing BFS from a start vertexvs (lines 1-2).
Here each vertex in Q ′ is a neighborhood equivalence class (NEC).
Then, for each start vertex xs of each region, Turboiso constructs a
candidate region (CR), i.e., an index maintaining candidates for each
NEC vertex inQ ′, viaDFS from xs (lines 3-4). If valid candidates are
found, i.e., CR , ∅, Turboiso enumerates all possible matches that
map xs to vs following a matching order O (lines 5-6). It expands
Q(G) with valid matches identified in the process (line 7).

Algorithm SubAc. Turboiso can be easily adapted to contracted
graph Gc , denoted by SubAc. As shown in Fig. 4, SubAc adopts
the same logic as Turboiso except minor adaptations in ExploreCR

Algorithm SubAc
Input: Contracted Gc , scheme ⟨fC , SSubIso, fD ⟩, function f ′C and pattern Q .
Output: The set Q (G) of all matches of Q in G .
1. Q (G) := ∅; vs := ChooseStartN(Q ,Gc )

2. Q ′ := RewriteToNEC(Q , vs );
3. for each xs ∈ {x | x ∈ Vc ∧ L(vs ) ⊆ L(x )} do
4. CR := ExploreCR(vs , xs , f ′C , SSubIso);
5. if CR , ∅ then
6. compute matching order O (xs ,CR);
7. Q (G) := Q (G) ∪ SGSearch((xs , vs ),Q ,Q ′,Gc ,O , f ′C , SSubIso, fD );
8. return Q (G);

Figure 4: Algorithm SubAc

(line 4) and SGSearch (line 7) to deal with supernodes. To see these,
let H be the subgraph contracted to a supernode vH .
(1) ExploreCR. It adds a supernode vH as a candidate for a node
u in Q if some node in vH can match u, which is checked by
SSubIso(vH ) and f ′C (vH ). It also prunesCR based onvH .type, e.g., a
node u inQ matches intermediate nodes on a path only if its degree
is no larger than 2. No supernodes or superedges are decontracted.
(2) SGSearch. Checking the existence of an edge (x,y) that matches
edge (vx ,vy ) ∈ Q is easy with synopses SSubIso and functions f ′C
and fD . Here x (resp. y) denotes a node in supernode vH = fC (x)
(resp. vH = fC (y)) in the candidates of vx (resp. vy ). When
fC (x) = fC (y) = vH , (a) if vH .type=star, (x,y) exists only if
x = vH .c or y = vH .c; (b) if vH .type = clique, (x,y) always ex-
ists; and (c) if vH .type=path, (x,y) exists if x and y are next to each
other invH .list. Hence no topological component is decontracted by
fD . (d) If vH .type=obsolete, it checks whether none of the labels in
Q is in f ′C (vH ); it safely skipsvH if so, and decontractsvH by fD to
check the existence of (x,y) otherwise. If x and y match distinct su-
pernodes, it suffices to decontract superedge (fC (x), fC (y)) by fD .

Example 3: Query Q in Fig. 1(c) is to find potential friendships
based on retweets and keywords. Nodes x and x ′ in Q both have
label x . Given Q , algorithm SubAc first chooses k as the start node,
to which only vH2 and vH3 can match. For vH2, ExploreCR adds
vH3 and t2 as candidates for t and t ′, vH5 for u, and vH4,vH5 for
u ′. Note that for obsolete supernode vH1, none of the labels in Q is
covered by f ′C (vH1); hence, vH1 can be safely skipped. SGSearch
finds that t2 matches t since there is no edge connecting vH3 and
vH5. Thus it matches k, t,u, t ′,u ′ with k1, t2,u6, t1,u4, respectively.
Similarly, for vH3, ExploreCR adds vH3 and t2 as candidates for t
and t ′, vH4 as candidate for u, and vH4,vH5 as candidates for u,u ′.
Next, SGSearch finds that u4 and t1 match u and t by decontracting
superedge (vH3,vH4); then k9 matches k . However, since k9 is an
intermediate node of pathvH3, no match for t ′ can be found. Hence,
k, t,u, t ′,u ′ match k1, t2,u6, t1,u4. 2

Analyses. SubAc is correct since it has the same logic as Turboiso
albeit pruning strategies. While the two have the same worst-case
complexity, SubAc operates on Gc , which is much smaller than
G (see Section 5); moreover, its ExplorCR saves traversal cost and
SGSearch saves validation cost by pruning invalid matches.

Temporal pattern matching. Algorithm SubAc can also take a
temporal pattern (Q, t) as part of its input, instead of Q . The only
major difference is at CR construction (line 4), where a supernode
vH is safely pruned if vH .t ≤ t , when vH .type is obsolete or not.
It skips a match if it contains a node v with T (v) ≤ t .
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3.2 Triangle Counting with Contraction
We next study triangle counting [14, 28]. In graph G , a triangle is a
clique of three vertices. The triangle counting problem is to find the
total number of triangles in G, denoted by TriC.

Similar to SubIso, TriC is local with diameter 1. In contrast to
SubIso, it consists a single query and is not labeled.

We adapt TriA [14] for TriC to contracted graphs, since it is
one of the most efficient TriC algorithms [28], and it does not use
indexing (as a different example from Turboiso).

Theorem 2: With a linear synopsis function, TriA can be adapted
toGc for TriC, which decontracts superedges only but decontracts
no supernodes, neither topological nor obsolete components. 2

3.2.1 Contraction for TriC. Observe that contraction function fC
onG is equivalent to node partition ofG , such that two nodes are in
the same partition if they are contracted into the same supernode.
The idea of synopses is to pre-count triangles with at least two nodes
in the same partition, without enumerating them. As will be seen
shortly, this allows us to avoid supernode decontraction for both
topological and obsolete components. Consider a triangle (u,v,w)

in G that is mapped to Gc via fC . We have the following cases.
(1) If fC (u) = fC (v) = fC (w) = vH , wherevH contracts a subgraph
H with vertex set V (H ), then (a) when H is a clique, there are( |V (H ) |

3
)
triangles inside H ; (b) when H is an obsolete component,

then the number of triangles insideH can be pre-calculated, denoted
by tH ; and (c) there are no triangles inside H otherwise.
(2) If fC (u) = fC (v) = vI , fC (w) = v J , where vI and v J contract
subgraphs I and J , respectively, then (a) when I is a clique, thenw
leads to

(k
2
)
triangles, where k is the number of neighbors ofw in

I . Denote by t Iw the number of such triangles in a clique neighbor
I ofw . (b) When I is an obsolete component or a star, then u and
v together lead to k triangles, where k is the number of common
neighbors of u,v in J . We denote by t Ju ,v the number of such trian-
gles in a common neighbor J of u,v . Note that I cannot be a path.
(3) If fC (u) = vI , fC (v) = v J , fC (w) = vK , we count such triangles
online and it suffices to decontract only superedges.

The synopsis STriC(vH ) of a supernode vH for TriC extends
SSubIso(vH )with an extra tag tc, which records the number of trian-
gles pre-calculated as above. More specifically, vH .tc is computed
as follows. In the definition below, u and v range over nodes in
V (H ), I ranges over clique neighbors of u, J ranges over common
neighbors of u,v , and t Iu , tH and t Ju ,v are defined as above:
◦ clique: vH .tc =

( |V (H ) |
3

)
+ ΣuΣI t

I
u ;

◦ star: vH .tc = ΣuΣI t
I
u + ΣuΣJ t

J
vH .c ,u ;

◦ path: vH .tc = ΣI t
I
u1 + ΣI t

I
u |V (H )|

, where u1 and u |V (H ) | are the
first and last node on the path, respectively; and

◦ obsolete: vH .tc = tH + ΣuΣI t
I
u + Σu ,vΣJ t

J
u ,v , where u and v

are connected nodes in subgraph H contracted by vH .
Synopses STriC also share the properties of SSubIso.

Example 4: In contracted graphGc of Fig. 1(b), onlyvH2 contracts
a clique, denoted by I . Synopsis STriC(vH ) of a supernode vH ex-
tends SSubIso(vH ) with vH .tc: (1) for vH1, (a) H1 contracted to vH1
contains no triangles; thus tH1 = 0; (b) I is not a neighbor of any

node u in V (H1); thus t Iu = 0; and (c) nodes in V (H1) have no
common neighbors, i.e., no J exist for any connected u,v ∈ V (H1);
thus t Ju ,v = 0. Hence vH1.tc = 0. (2) For vH2, vH2.type=clique,
|V (H2)| = 5 and no other supernodes in Gc are cliques. Hence
vH2.tc = 10. (3) For vH3, the first and last elements k6 and t1 have
2 and 1 neighbors in I , respectively. Thus t Ik6 = 1, t It1 = 0, and
vH3.tc = 1. (4) Similarly, vH4.tc = vH5.tc = 0, and t2.tc = 3. 2

3.2.2 Triangle counting. We now adapt algorithm TriA [14] to con-
tracted graphs. The adapted algorithm is referred to as TriAc.
TriA. Given a graphG , TriA assigns distinct numbers to all the nodes
in G. It then enumerates triangles for each edge (u,v) by counting
the common neighborsw of u and v such thatw < u andw < v .

Algorithm TriAc. On a contracted graph Gc with superedges de-
contracted, TriAc works in the same way as TriA except that at a
supernode vH (for either topological and obsolete component), it
simply accumulates vH .tc without decontraction or enumeration.

Example 5: From synopsis STriC, TriAc directly finds 14 triangles.
In Gc , it finds two additional triangles (u6, t2,k1) and (t1, t2,k1) by
restoring superedges. Thus it finds 16 triangles inG . No supernodes
of either topological or obsolete components are decontracted. 2

Analyses. TriAc is correct since it counts all triangles inG once and
only once. It speeds up TriA since it works on a smaller contracted
Gc , and reduces the cost by leveraging pre-calculated triangles.

Temporal triangle counting. TriAc can be adapted to count trian-
gles with timestamp later than a given time t . It prunes a supernode
vH ifvH .t ≤ t , and drops a triangle if it has a nodev withT (v) ≤ t .

3.3 Shortest Distance with Contraction
We next study the shortest distance problem, denoted by Dist.
Shortest distance. Consider an undirected weighted graph G =
(V , E, L,T ,W ) with additional weight W ; for each edge e , W (e)
is a positive number for the length of the edge. The length of a path
p = (v0, . . . ,vk ) in G is simply sumi ∈[1,k ]W (vi−1,vi ).

The problem is to compute, given a pair (u,v) of nodes inG , the
shortest distance between u and v , denoted by d(u,v) [3, 13, 18].

As opposed to SubIso, shortest distance queries are unlabeled,
i.e., the value of query answer d(u,v) does not depend on labels. In
contrast to SubIso and TriC, Dist is non-local, i.e., there exists no d
independent of the input graph G such that d(u,v) < d .

We adapt Dijkstra’s algorithm [18] to contracted graphs, denoted
by Dijkstra, which is one of the best known algorithms for Dist.
Theorem 3:With a linear synopsis function, Dijkstra for Dist can
be adapted to contracted graph Gc ; it decontracts superedges but no
supernodes, neither topological nor obsolete components. 2

3.3.1 Contraction for Dist. A path between nodes u and v can
be decomposed into (1) edges between supernodes, and (2) paths
within a supernode. The idea of synopses is to pre-compute
the shortest distances within supernodes to avoid supernode
decontraction, for both topological and obsolete components. Edges
between supernodes are recovered by superedge decontraction
when necessary. Suppose that v1 and v2 are nodes mapped to
supernode vH by fC , i.e., fC (v1) = fC (v2) = vH . We compute the
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shortest distance for (v1,v2) within the subgraph H contracted
to vH , denoted by dvH (v1,v2). The synopsis SDist(vH ) extends
SSubIso(vH )with a tag dis that is a set of triples (v1,v2,dvH (v1,v2))
for a path between v1 and v2 within vH , based on vH .type:
◦ clique: vH .dis={(v1,v2,dvH (v1,v2))} for v1,v2∈ f ′C (vH );
◦ path: vH .dis = {(u1,u |f ′C (vH ) |, Σ1≤i< |f ′C (vH ) |W (ui ,ui+1))}, i.e.,
it records the path itself;

◦ obsolete: vH .dis={(v1,v2,dvH (v1,v2)) | v1,v2∈ f ′C (vH )}.
We can compute SDist(vH ) in constant time as | f ′C (vH )| ≤ ku

if vH .type is clique or obsolete. If vH .type is star, we can find
dvH (v1,v2) for two nodes by using the synopsis, f ′C andW .

Example 6:Assume thatW (u,v) = 1 for all edges (u,v) in graphG
of Fig. 1(a). Then for supernodes in Fig. 1(b), (1) vH1.dis = {(i1, f1,
1), (i1,n1, 1), (i1, l1, 1), (f1,n1, 2), (f1, l1, 2), (n1, l1, 2)}; (2) vH2.dis =
{(ki ,kj , 1)} for 1 ≤ i < j ≤ 5; and (3) vH3.dis = {(k6, t1, 4)}. 2

3.3.2 Shortest distance. We adapt algorithm Dijkstra to contracted
graphs Gc , and refer to the adapted algorithm as DisAc.
Dijkstra. Given a graph G and a pair (u,v) of nodes, Dijkstra finds
the shortest distances from u to nodes inG in ascending order, and
terminates as soon as d(u,v) is determined. It maintains a set S
of nodes whose shortest distances from u are known; it initializes
distance estimates d(u) = 0, and d(w) = ∞ for other nodes. At each
step,Dijkstramoves a nodew fromV \S to S that has minimal d(w),
and updates distance estimates of nodes adjacent tow accordingly.

Algorithm DisAc. DisAc is the same as Dijkstra except minor
changes to updating distance estimates.Whenmoving a nodew hav-
ing fC (w) = vH , from V \ S to S , DisAc updates distance estimates
d(w ′) forw ′ ∈ f ′C (vH ) as follows: (1) if vH .type is clique or obso-
lete, update d(w ′) by d(w)+dvH (w,w

′) usingvH .dis; (2) ifvH .type
= star, update d(w ′) by d(w)+dvH (w,w

′), where dvH (w,w ′) can be
easily computed by synopsis; (3) ifvH .type = path, update d(w ′) by
d(w)+dvH (w,w

′) for the other endpointw ′ using vH .dis; in these
cases, no supernode of either topological or obsolete components is
decontracted. In addition, DisAc updates d(w ′) by d(w)+W (w,w ′)

for all edges (w,w ′) where fC (w) , fC (w
′), by decontracting su-

peredge (fC (w), fC (w
′)) at worst, the same as Dijkstra.

Example 7: Given query (u2,k5) on Gc of Fig. 1(b), DisAc works
in steps: (1) initially, S = ∅, d(u2) = 0, and d(v) = ∞ for all other
nodes; (2) S = {u2}, d(u5) = 1, d(u1) = d(u3) = d(u4) = 2 by f ′C
and SDist(vH4) (vH4 contracts a star); (3) S = {u2,u5,u1,u3,u4},
d(t1) = 3 by edge (u4, t1), and d(k6) = d(t1) + dvH 3 (k6, t1) = 7 by
vH3.dis; d(i1) = 3 by edge (u1, i1), and d(f1) = d(n1) = d(l1) = 4 by
vH1.dis; similarly, d(u7) = 3 and d(u10)=4, d(u6) = d(u8) = d(u9) =
5 by f ′C and SDist(vH5); (4) S = {u2,u5,u1,u3,u4, t1, i1,u7}, d(t2) =
4 by edge (t1, t2); (5) S = {u2,u5,u1,u3,u4, t1, i1,u7, f1,n1, l1, t2},
d(k1) = d(k3) = d(k5) = 5 by edges (t2,k1), (t2,k3), (t2,k5). When
DisAc moves k5 to S , it gets d(k5) = 5. It returns d(u2,k5) = 5. 2

Analyses. By induction on the length of shortest paths, we can verify
that DisAc is correct. In particular, for each node w ′ in G, when
d(w ′) is updated by nodew that is mapped to the same supernode,
the update is equivalent to a series of Dijkstra updates. Moreover,
DisAc works on smaller contracted graphs Gc and saves traversal

cost inside contracted components without any decontraction.

Temporal shortest distance. Similar to temporal SubIso and TriC,
we consider temporal Dist queries (u,v, t), where (u,v) is a pair of
nodes as in Dist, and t is a timestamp. It is to compute the shortest
length of paths p from u to v such that for each node w on p,
T (w) > t . It is also to prioritize frequently visited nodes in a graph.

Algorithm DisAc can be adapted to temporal Dist, by skipping
nodesv withT (v) ≤ t . It safely ignores a supernodevH ifvH .t ≤ t .

4 INCREMENTAL CONTRACTION
We next develop an incremental algorithm to maintain contracted
graphs in response to updates ∆G to graph G. We start with batch
update ∆G, which is a sequence of edge insertions and deletions.
We formulate the problem (Section 4.1), present the incremental al-
gorithm (Sections 4.2, 4.3), and discuss vertex updates (Section 4.4).

4.1 Problem
Given a contraction scheme ⟨fC ,S, fD ⟩, a contracted graph Gc =

fC (G), and batch update ∆G, the incremental contraction problem,
denoted as ICP, is to compute (a) changes ∆Gc to Gc such that
Gc ⊕ ∆Gc = fC (G ⊕ ∆G), i.e., to get the contracted graph of the
updated graphG ⊕ ∆G , whereGc ⊕ ∆Gc applies ∆Gc toGc ; (b) the
updated synopses of supernodes; and (c) functions fC ⊕ ∆fC and
function fD ⊕ ∆fD w.r.t. the new contracted graph Gc ⊕ ∆Gc .

ICP studies the maintenance of contracted graphs in response
to update ∆G that may change both the topological structures
of contracted graph Gc , and refresh timestamps of nodes. As a
consequence, obsolete nodes may be promoted to be non-obsolete
ones if they are touched by edges in ∆G, among other things.
Criterion. Following [44], wemeasure the complexity of incremental
algorithms in terms of the size of the affected area, denoted by AFF.
Here AFF includes (a) changes ∆G to the input, (b) changes ∆Gc to
the output, and (c) edges with at least an endpoint in (a) or (b).

An incremental algorithm is said to be bounded if its complexity
is determined by |AFF|, not by size |G | of graph G.

Intuitively,∆G is typically small in practice.When∆G is small, so
is ∆Gc . Hence when ∆G is small, a bounded incremental algorithm
is often far more efficient than a batch algorithm that recomputes
Gc starting from scratch, since the cost of the latter depends on the
size of possibly big G, as opposed to |AFF| of the former.

An incremental problem is bounded if there exists a bounded
incremental algorithm for it, and is unbounded otherwise.
Challenges. Problem ICP is nontrivial. (1) Topological components
are fragile, e.g.,when inserting an edge between two leaves of a star
H , H is no longer a star, and its nodes may need to be merged into
other topological components. (2) Refreshing timestampsmaymake
some obsolete nodes “fresh”, and force us to reorganize obsolete and
topological components. (3) When contracted graphGc is changed,
so are their associated synopses and decontraction function.
Main result. Despite the challenges, we show that bounded incre-
mental contraction is within reach in practice.
Theorem 4: Problem ICP is bounded for SubIso, TriC and Dist, and
takes at most O(|AFF|2) time. 2

We give a constructive proof of Theorem 4 consisting of two
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parts: (1) the maintenance of the contracted graph Gc and its
associated decontraction function fD (Section 4.2); and (2) the
maintenance of the synopses of affected supernodes (Section 4.3).

4.2 Incremental Contraction
An incremental algorithm is shown in Fig. 5, denoted by IncCR. It
has three steps: preprocessing to initialize affected areas, updating to
maintain contracted graphGc , and contracting to process refreshed
singleton nodes. To simplify the discussion we focus on how to
update Gc in response to ∆G; the handling of fD is similar.
(a) Preprocessing. Algorithm IncCR first identifies an initial area
affected by update ∆G (lines 1-2). It removes “unaffecting” updates
from ∆G that have no impact on Gc (line 1), i.e., edges in ∆G that
are between two supernodes when none of their nodes is an inter-
mediate node of a path. These updates are made to corresponding
subgraphs of G that are maintained by fD . It then refreshes times-
tamps of nodesu touched by edges e = (u,v) in ∆G (line 2). Suppose
that u is mapped by fC to supernode vH with vH .type = obsolete.
ThenvH is decomposed into singleton nodes, u is non-obsolete and
is mapped to itself by fC . Such singleton nodes are collected in a
setVs , as the initial area affected by ∆G . Node v is treated similarly.

Note that an unaffecting update would not become affecting
later on. All changes in ∆G are applied in G in the given order.
(b) Updating. IncCR then updatesGc (lines 3-8). For each update e =
(u,v), IncCR invokes procedure IncCR+ (resp. IncCR−) to update
Gc when e is to be inserted (resp. deleted) (lines 4-7). Updating
Gc may make some updates in ∆G unaffecting, which are further
removed from ∆G (line 8). Moreover, some nodes may become
“singleton” when a topological component is decomposed by the
updates, e.g., leaves of a star. It collects such nodes in the set Vs .

More specifically, to insert an edge e = (u,v), IncCR+ updates
Gc and adds new singleton nodes to Vs . Suppose that u (resp. v)
is mapped by fC to supernode vH1 (resp. vH2) (line 1). IncCR+
decomposes vH1 and vH2 into the regular structures of topological
components (line 2). For instance, if vH1 and vH2 are the same
star, u and v make a triangle with the central node; thus IncCR+
decomposes the star into singleton nodes. WhenvH1.type = clique
and vH2.type = path, vH2 is divided into two shorter paths. Note
that components with less than kl nodes are decomposed into
singleton nodes. All such singleton nodes are added to Vs (line 3).
(c) Contracting. Finally, algorithm IncCR processes nodes in Vs
(line 10). It (a) merges nodes into neighboring supernodes; or (b)
builds new components with these nodes, if possible; otherwise (c)
it leaves nodes v as singleton, i.e., by letting fC (v) = v .

Example 8: Consider inserting four edges into G of Fig. 1(a): (1)
(n1, f1): nodes n1 and f1 are mapped to obsolete component vH1,
and vH1 is decomposed into singleton nodes, one for each of n1,
f1, i1 and l1; then (n1, f1) is removed from ∆G; (2) (k1,u4): it is
unaffecting since fC (k1) , fC (u4) and neither k1 nor u4 is an inter-
mediate node of a path; (3) (k1,u10): it is also unaffecting; and (4)
(u1,u4): as it makes a new triangle (u1,u4,u5), vH4 is decomposed
into singletons. Edge deletions are handled similarly. 2

Analyses. Algorithm IncCR takes O(|AFF|2) time: (a) the prepro-
cessing step is inO(|∆G |) time; (b) the updating step takesO(|AFF|)

Algorithm IncCR
Input: A graph contraction scheme ⟨fC , S, fD ⟩, a contracted

graph Gc of a graph G and updates ∆G to G .
Output: New contracted graph Gc ⊕ ∆Gc .
1. reduce ∆G ; Vs := ∅;
2. refresh nodes u in ∆G ;
3. for each update e = (u , v) ∈ ∆G do
4. if e is an edge insertion
5. then IncCR+(Gc , e ) ;
6. else if e is an edge deletion
7. then IncCR−(Gc , e ) ;
8. reduce ∆G ;
9. Contract (Vs ,Gc );
10. return Gc ;

Procedure IncCR+

Input:a contracted graph Gc , edge insertion e = (u , v).
Output: An updated Gc .
1. vH 1 := fC (u); vH 2 := fC (v);
2. Divide (vH 1, vH 2);
3. add singleton nodes into Vs ;

Figure 5: Algorithm IncCR

time, in which updating fD is the dominating part; and (3) the cost
of contracting Vs into topological components is in O(|AFF|2).

The algorithm is (a) bounded [44], since its cost is determined by
|AFF| alone, and (b) local [21], i.e., the changes are confined only to
affected supernodes and their neighbors in Gc .

4.3 Maintenance of Synopses
We next show that for SubIso, TriC and Dist, (a) the number of
supernodes whose synopses are affected is at most O(|AFF|), and
(2) the synopsis for each supernode can be updated in O(|AFF|)
time. Hence incremental synopses maintenance for each of SubIso,
TriC and Dist takes at most O(|AFF|2) time.

To see these, consider a supernodevH inGc . (a) For SubIso, recall
that SSubIso(vH ) stores the type and key features ofvH (Section 3.1).
It is easy to see that the number of supernodes whose synopses are
affected is at most |∆Gc |, and SSubIso(vH ) for each such vH can be
updated inO(1) time. Thus the maintenance of SSubIso is bounded in
O(|AFF|) time. (b) For TriC, synopsis STriC(vH ) extends SSubIso(vH )

with vH .tc. Note that vH .tc is updated by (i) clique neighbors I
of nodes u in vH where I ∈ AFF; (ii) vH itself if vH .type=clique
or vH .type=obsolete; and (iii) common neighbors J of connected
nodesu,v invH for J ∈ AFF. Thus supernodes affected are enclosed
in AFF, which covers ∆G, ∆Gc and their neighbors. Moreover,
STriC(vH ) for each affected vH can be updated in |AFF| time. Thus
the maintenance of STriC is bounded inO(|AFF|2) time. (c) For Dist,
SDist(vH ) extends SSubIso(vH ) with vH .dis, which is confined to
vH and can be updated inO(1) time since | f ′C (vH )| ≤ ku . Thus the
incremental maintenance of SDist is bounded in O(|AFF|) time.

Example 9: Continuing with Example 8, we show how to main-
tain vH .tc in STriC(vH ) for supernodes vH in Gc ; SSubIso(vH ) and
SDist(vH ) are simpler since their affected synopses are confined to
∆Gc . (1) For edge insertion (n1, f1), vH1 is decomposed into four
singletons, for which synopses are defined asn1.tc = f1.tc = l1.tc =
i1.tc = 0. (2) For (unaffecting) edge insertion (k1,u4),vH .tc remains
the same for all vH ∈ Gc . (3) For (unaffecting) insertion (k1,u10),
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Graph |V |, |E | ku CR clique star path obsolete
Twitter 81K, 1.3M 100 0.184/0.299 8.95/35.12 17.78/64.88 0.00/0.00 73.27/0
LiveJournal 4M, 35M 500 0.397/0.558 12.08/37.27 21.52/62.71 0.01/0.02 66.40/0
LivePokec 1.6M, 22M 500 0.472/0.689 4.45/11.35 35.81/88.65 0.00/0.00 59.73/0
Google 876K, 4.3M 200 0.193/0.294 17.75/52.20 17.72/47.76 0.02/0.04 64.52/0
NotreDame 325K, 1.1M 200 0.279/0.47 9.36/30.47 22.89/69.32 0.01/0.21 67.68/0
DBLP 204K, 382K 100 0.140/0.172 33.56/71.87 13.18/28.11 0.02/0.03 53.24/0
Hollywood 1.1M, 56M 500 0.246/0.561 16.36/81.40 5.69/18.60 0.00/0.00 77.95/0
citHepTh 28K, 352K 50 0.278/0.396 14.50/41.29 21.90/58.59 0.02/0.13 63.57/0
Traffic 24M, 29M 500 0.401/0.750 0.01/0.03 15.05/78.40 4.25/21.60 80.70/0

Table 1: Contraction ratio

Graph SubIso TriC Dist
RE EX RE EX RE EX

Twitter 6.96 4.08 5.95 3.16 4.18 3.51
LiveJournal 8.17 6.56 6.92 2.11 4.57 5.03
LivePokec 10.47 6.76 6.23 4.0 3.06 4.01
Google 3.39 5.98 2.44 2.67 2.36 5.22
NotreDame 10.89 4.64 1.8 4.74 4.02 4.82
DBLP 4.09 6.58 4.98 6.45 3.46 4.02
Hollywood 5.49 4.75 4.3 7.07 2.38 5.42
citHepTh 6.67 4.92 4.38 4.3 3.61 4.09
Traffic 9.48 5.31 5.61 5.11 5.62 4.32
Table 2: Slowdown (%) by RE and EX orders

k1 becomes a common neighbor of u10 and u6; then tH2
u10,u6 = 1 and

vH5.tc = 1. (4) When inserting (u1,u4), vH4 is decomposed into
singletons, whose synopses are u1.tc = . . . = u5.tc = 0. 2

4.4 Vertex Updates
Vertex updates are a dual of edge updates [32]. More specifically,
(1) when inserting a new nodev ,v is first treated as a singleton and
collected in set Vs ; it is then contracted into a topological structure
in the contracting step of algorithm IncCR (line 9).
(2) When deleting a node v that is contracted into a supernode vH ,
there are three cases to consider: (a) if v is the central node of a
star, vH is removed and all nodes in f ′C (vH ) except v are treated as
singletons and collected in set Vs , as in the updating step of algo-
rithm IncCR (line 5); the singletons are then contracted as above;
(b) if v is an intermediate node of a path, vH is replaced by two
supernodes that contract two shorter paths, as in the updating step
(line 5); otherwise (c) v is removed directly as in the preprocessing
step (line 1). Note that deleting v may remove some superedges
adjacent to vH , which are maintained by function fD .

Similar to edge updates, contracting nodes in Vs dominates the
cost. One can verify that it can be done inO(|AFF|2) time. Similarly,
synopsis maintenance also takesO(|AFF|2) time. Hence incremental
contraction remains bounded in the presence of vertex updates.

5 EXPERIMENTAL STUDY
Using real-life graphs, we experimentally evaluated (1) the
reduction ratio and (2) the speedup of the contraction scheme, (3)
the impact of contracting each topological component and obsolete
component; (4) the space cost of the contraction scheme compared
to existing indexing methods; (5) the efficiency of the (incremental)
contraction algorithm; and (6) the parallel scalability of the scheme.
Experiment setting. We used the following datasets.
(1) Graphs. We used 9 real-life graphs: three social networks Twitter
[40], LiveJournal [51] and LivePokec [6]; two Web graphs Google
[35] and NotreDame [4]; three collaboration networks DBLP [2],
Hollywood [10] and citHepTh [34]; and a road network Traffic [1].
Their sizes are shown in Table 1. We randomly generated a time
series to simulate obsolete attributes, at most 70% (it is 80% for the
IT data of our industry collaborator). We also tested obsolete com-
ponents with random (temporal) queries generated on all datasets.

We also generated synthetic graphs with up to 10M nodes and
100M edges, to test the scalability of the contraction algorithm.
Updates. We randomly generated ∆G , controlled by size |∆G | and a
ratio ρ of edge insertions to deletions. We kept ρ = 1 unless stated
otherwise, i.e., the size of G ⊕ ∆G remains stable.

(2) Graph patterns. We generated pattern queries controlled by the
numberVQ of query nodes, the number EQ of edges, and labels LQ .
(3) Implementation.We implemented the following, all in C++. (1)
Algorithms SubAc (Section 3.1.2), TriAc (Section 3.2.2), DisAc (Sec-
tion 3.3.2) and VF2c for SubIso by adapting VF2 [16] to contracted
graphs. (2) Our contraction algorithm GCon (Section 2.2) and its
parallel version PCon (Section 2.3), and incremental algorithm
IncCR for batch updates (Section 4). (3) The baselines include:
(a) Turboiso [26] and TurboIsoBoosted [45] with indexing, and
VF2 [16] without indexing for SubIso; (b) graph compression
DeDense [39] for SubIso; (c) TriA [28] for TriC; and (d) Dijkstra
for Dist. We did not compare with summarization since it does not
support any exact algorithm for the three applications.
(4) Environment. The experiments were run on a single processor
machine powered by Xeon 3.0 GHz with 32G memory, running
Linux. We simulated up to 20 distributed parallel machines using
two machines, each with 12 cores powered by Xeon 3.0 GHz, 64GB
RAM, and 10Gbps NIC. Each simulated machine has a single core
with 4GB RAM, and communication is only via message passing.
Each experiment was run 5 times. The average is reported.

Experimental results. We now report our findings.

Exp-1: Effectiveness: Contraction ratio. We first tested the con-
traction ratio of our contraction scheme, defined as CR = |Gc |/|G |.
Note that for each query class Q, CR is the same for all queries in
Q. Moreover, all applications onG share the same contracted graph
Gc albeit different synopses. We also report the impact of each
topological component and obsolete component for each dataset .

As remarked in Section 2, we limit the nodes of contracted
subgraphs within [kl ,ku ]. We fixed kl = 4 and varied ku based
on the size of each graph. We considered two settings: (a) when
obsolete data is taken into account, with threshold t0 = 50%tm ,
where tm denotes the maximum timestamp in each dataset; and
(b) when we do not separate obsolete data, i.e., when t0 = 0. The
results are reported in Table 1 for all the real-life graphs (in which
each column indicates either CR or percentage of contribution to
CR with/without obsolete mark). We can see the following.

(1) When t0 = 50%tm , CR is on average 0.288, i.e., contraction
reduces these graphs by 71.2%. When t0 = 0, i.e., if obsolete data is
not considered,CR is 0.465. These show that real-life graphs can be
effectively contracted in the presence and absence of obsolete data.

(2) When obsolete data is present, the average CR is 0.351, 0.236,
0.221 and 0.401 in social networks, Web graphs, collaboration net-
works and road networks, respectively. When obsolete data is ab-
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Figure 6: Performance evaluation

sent,CR is 0.515, 0.382, 0.377 and 0.75. The contraction scheme per-
forms the best on collaboration networks in both settings, since such
graphs exhibit evident inhomogeneities and community structures.
(3) When obsolete data is absent, on average a component of path,
clique and star contains 4.81, 5.34 and 8.41 nodes and contribute
2.5%, 40.1% and 57.4% to CR, respectively. When obsolete mark is
taken into account, their contribution is 0.5%, 12.9% and 19.4% to
CR, respectively. This is because nodes from these components may
be moved to obsolete components. Cliques and paths bear smaller
impact than stars, due to their regular structures and size bound kl .
Hence stars contribute more substantially to CR in this case.
(4) We also studied the impact of the contraction order on query
evaluation. Taking the order proposed in Section 2 as the baseline,
we tested the impact of (a) RE, by reversing the order, and (b) EX,
by exchanging between different types of graphs, e.g., we use the
order for road networks to contract social graphs. On average the
CR of RE and EX is decreased by 5.3% and 5.1%, respectively. As
shown in Table 2, the average slowdown of RE and EX is (a) 7.3%
and 5.5% for SubIso, (b) 4.7% and 4.4% for TriC, and (c) 3.7% and
4.5% for Dist, respectively. These justify the order of Section 2.

Exp-2: Effectiveness: query processing. We next evaluated the
speedup of the scheme, measured by query evaluation time over
original and contracted graphs. We report results on some graphs
for the lack of space; the results on the other graphs are consistent.
Subgraph isomorphism. Varying |VQ | from 4 to 7, we tested VF2,
Turboiso and TurboIsoBoosted on LiveJournal as G, DeDense [39]
on the compressed graph, and SubAc and VF2c on the contracted

graph Gc of G. As shown in Fig. 6(a), (1) on average, SubAc on
Gc is 1.68, 19.1 and 1.55 times faster than Turboiso, DeDense and
TurboIsoBoosted, respectively; (2) VF2c beats DeDense by 9.36
times; (3) VF2c without indices is only 18.1% slower than Turboiso
with indices, while Turboiso and TurboIsoBoosted are 9.1 and 9.8
times faster than VF2, respectively; and (4) the speedup is bigger
on collaboration networks, e.g., 1.71 times on Hollywood.
Triangle counting. As shown in Fig. 6(b), the results for TriC are
consistent with the results on subgraph isomorphism: (1) TriAc on
the contractedGc is on average 1.42 times faster than TriA on their
original graphsG . (2) The speedup is more evident in collaboration
networks: e.g.,TriAc on Hollywood is 1.47 times faster than TriA.
Shortest distance. As also shown in Fig. 6(b), algorithmDisAc is 2.06
and 2.36 times faster than Dijkstra on LiveJournal and Hollywood,
respectively, by reducing search and employing synopses.
Temporal queries. Fixing |Q | = 4 and varying t from 30%tm to
70%tm , we evaluated temporal queries SubIsot , TriCt and Distt
on LiveJournal. As shown in Figures 6(c)-6(d), (1) SubAc is on aver-
age 1.86 and 1.79 times faster than Turboiso and TurboIsoBoosted,
respectively; VF2c outperforms VF2 by 8.08 times. (2) The average
speedup for TriC and Dist is 1.52 and 2.35 times, respectively. (3)
The speedup is larger for temporal queries than for conventional
ones, as expected. (4) It is more substantial for larger t on SubIsot .

The results verify that our contraction scheme (a) speeds up eval-
uation for all three applications, and (b) can be used together with
existing algorithms, with indexing (e.g., Turboiso) or not (e.g., VF2c).
(c) It is effective by separating up-to-date data from obsolete.
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Graph SubIso TriC Dist
clique star path clique star path clique star path

Twitter 0.44 0.09 0 0.16 0.19 0 0.27 0.27 0
LiveJournal 0.08 0.03 0 0.17 0.02 0.01 0.44 0.13 0.03
LivePokec 0.58 0.11 0 0.03 0.23 0 0.3 0.24 0.002
Google 0.45 0.2 0 0.33 0.18 0.03 0.42 0.15 0
NotreDame 0.71 0.19 0.02 0.5 0.36 0 0.47 0.26 0
DBLP 0.72 0.17 0.02 5.75 2.19 0 0.26 0.37 0.01
Hollywood 0.13 0.02 0.01 0.23 0.11 0 0.24 0.26 0.01
citHepTh 0.56 0.16 0 0.17 0.08 0 0.32 0.23 0.03
Traffic 0.11 0.25 0.04 0.01 0.21 0.1 0.001 0.09 0.06

Table 3: Slowdown(s) by disabling topological component

Exp-3: Impact of each component. We next evaluated the im-
pact of contracting each of clique, star and path.
Impact of topological components. We took contraction of all the 3
topological components as the baseline (unit 1), and tested the
impact of each component in query evaluation time by disabling it,
using all the datasets. As shown in Table 3, the average slowdown
in evaluation time by disabling clique, star and path is: (a) 27.3%,
9.9% and 0.6% for SubIso, (b) 19.6%, 11.5% and 0.2% for TriC, and (c)
21.7%, 17.2% and 3.0% for Dist, respectively. We can see that clique
has the biggest impact on SubIso due to its high pruning power.
Impact of obsolete components. We tested the impact of obsolete
data on conventional queries. Fixing |Q | = 4 and varying x for
timestamp threshold t0 = x%tm , Figure 6(e) reports the runtime
of SubIso on Hollywood. We find that (1) the speedup is bigger
for larger t0 when t0 ≤ 70%, i.e., more nodes are contracted into
obsolete components; (2) obsolete components speed up SubIso,
TriC and Dist by 1.32, 1.16 and 1.21 times, respectively; and (3) the
speedup for SubIso gets smaller when t0 ≥ 80% due to the overhead
of decontracting obsolete components. The results are consistent
forDist and TriC, except that their speedup does not go down when
t0 gets larger since they do not decontract obsolete supernodes.
Impact of kl and ku . We also tested the impact of kl and ku on
the contraction ratio and efficiency. Fixing ku = 500 (resp. kl = 4)
and varying kl (resp. ku ) from 2 to 6 (resp. 20 to 1000), Figure 6(f)
(resp. 6(g)) reports the CR (right y-axis) and speedup (left y-axis)
of SubAc, TriAc and DisAc on Hollywood. The CR decreases with
the decrease of kl and increase of ku . Moreover, query evaluation
is slowed down when kl ≤ 3 or ku ≥ 500 because of excessive
superedge decontractions or overlarge components. Thus, we find
that the best kl and ku for Hollywood are 4 and 500, respectively.
The results on the other graphs are consistent (not shown).

Exp-4: Space cost. We next studied the space cost of our
contraction scheme compared with indexing cost. The space cost
includes the sizes of the contracted graph |Gc |, decontraction
function | fD | and the sizes of synopses for active applications;
as shown in Section 3, SubAc, TriAc and DisAc do not need to
decontract topological components; hence we only uploaded fD
for obsolete components into memory. Space cost of SubAc also
includes the size of adopted indexes ISubIso. We compared with the
three indices used by Turboiso, HINDEX [43] and PLL [3].

Table 4 shows how the space cost increases when more applica-
tions run onGoogle asG . We find the following. (1) Our contraction
scheme takes totally 941MB for SubIso, TriC andDist, much smaller
than 9.58GB taken by Turboiso, PLL and HINDEX. (2) With the

Application Contraction scheme Indexing
detail space cost detail space cost

Shared parts Gc , fD 837MB G 727MB
+SubIso SSubIso, ISubIso 875MB Turboiso 1.07GB
+TriC STriC 901MB +HINDEX 2.1GB
+Dist SDist 941MB +PLL 9.58GB
+MC SMC 1.05GB +RMC 12.9GB
+kNN SkNN 1.18GB +Antipole 19.4GB

Table 4: Total space cost of applications run on Google

contraction scheme, graphG is no longer needed. That is, compared
to G, the scheme uses only 29.4% additional space for the supern-
odes/edges in Gc and synopses for three applications. The scheme
trades affordable space for speedup. (3) Synopses SSubIso, STriC
and SDist take 11.1% of the total space of contraction, i.e., Gc and
fD dominate the space cost, which are shared by all applications.
Hence the more applications are supported, the more substantial
the improvement of the contraction scheme is over indices. To ver-
ify this, we further adapted existing algorithms for maximum clique
(MC) [38] and k-nearest neighbors (kNN) [50]. The total space cost
of the contraction scheme for the five applications is 1.18GB, i.e.,
25% increment. It accounts for only 6.1% of the indices for Turboiso,
PLL, HINDEX, RMC [38] of MC and Antipole [11] of kNN.

Exp-5: Efficiency of (incremental) contraction. We next eval-
uated the efficiency of both GCon and IncCR. We also studied the
impact of the order and varied rates of updates on IncCR.
Efficiency of GCon. We first report the efficiency of GCon on
liveJournal. As shown in Fig. 6(h), (1) on average it takes 37.7s to con-
tract the graph. (2) It takes on average 1.63s, 8.75s, 4.93s only to com-
pute the synopses for SubIso, TriC and Dist, respectively; i.e., com-
puting synopses only takes on average 13.5% of the time of GCon.
Efficiency of IncCR. We next tested the efficiency of IncCR, by vary-
ing |∆G | from 5%|G | to 35%|G |. As shown in Fig. 6(i) on liveJournal,
(1) on average IncCR is 1.8 times faster than GCon, up to 5.1 times
when |∆G | = 5%|G |. It takes on average 13.3% time to update the
synopses for 5% updates on the three applications. (2) IncCR beats
GCon even when |∆G | is up to 30%|G |. This justifies the need for in-
cremental contraction. (3) IncCR is sensitive to |∆G |; it takes longer
for larger |∆G |. Results are consistent on the other graphs.
Impact of update order. We tested the impact of the orders of edge
insertions and deletions in ∆G on IncCR. Fixing |∆G | = 10%, we
varied the order of updates by (1) random (RO), (2) insertion-first
(IF) and (3) deletion-first (DF). On average RO, IF and DF have a
performance difference less than 3.6% onHollywood. That is, IncCR
is stable on batch updates, regardless of the order of single edges.
Impact of update rates. We also evaluated the efficiency of IncCR
against real-time updates, measured by the updates coming in 1s
intervals, i.e., |∆G |/s. Varying |∆G |/s from 0.2%|G |/s to 1%|G |/s,
Figure 6(j) show the following on LiveJournal. (1) On average it
takes only 0.88s to update the graph. (2) The update time is less than
1s even when the updates are up to 0.8%|G |. Thus IncCR can handle
0.8%|G | of "burst" updates on graph with 40M nodes and edges.

Exp-6: Scalability. Finally, we evaluated (1) the scalability of our
contraction algorithmGConwith graph size |G |, and (2) the parallel
scalability of algorithm PCon with the number of machines.
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Scalability on |G |. Varying the size |G | = (|V |, |E |) of synthetic
graphs from (2M, 20M) to (10M, 100M), we tested the scalability of
GCon. As shown in Fig. 6(k), GCon scales well when G grows. It
takes 103s even when G has 10M nodes and 100M edges.
Scalability of PCon. We tested the scalability of algorithm PCon
with the number k of machines, by varying k from 4 to 20. As shown
in Fig. 6(l) on Hollywood, PCon scales well with k by improving
3.8 times. The results on other graphs are consistent.

Summary. We find the following over 9 real-life graph. On average,
(1) the contraction scheme reduces graphs by 71.2%. The contrac-
tion ratio is 0.351, 0.236, 0.221 and 0.401 in social networks, Web
graphs, collaboration networks and road networks, respectively. (2)
It improves the evaluation of SubIso, TriC andDist by 1.53, 1.42 and
2.14 times, respectively. Existing algorithms can be adapted to the
scheme, with indices or not. (3) Cliques, stars and paths improve
the query evaluation by 22.9%, 12.9% and 1.3%, respectively. (4) Con-
tracting obsolete data improves the efficiency of both conventional
queries and temporal queries, by 1.23 and 1.88 times on average,
respectively. (5) Its total space cost on SubIso, TriC and Dist is only
9.8% of indexing costs of Turboiso, PLL andHINDEX. The synopses
for the three query classes take only 11.1% of the total space. Thus
our contraction scheme scales with the number of applications.
(6) Algorithms GCon, PCon and IncCR scale well with graphs and
updates. GCon takes 103s when G has 110M edges and nodes, and
PCon takes 9.7s with 20 machines. IncCR is 5.1 times faster than
GCon when |∆G | is 5%|G |, and is still faster up to 30%|G |.

6 RELATEDWORK
Contraction. As a traditional graph programming technique [25],
node contraction merges nodes, and subgraph contraction replaces
connected subgraphs with supernodes. It is used in e.g., single
source shortest paths [30], connectivity [25] and spanning tree [23].

In contrast, we extend contraction with synopses to build a
compact representation of graphs as a generic optimization scheme,
which is a departure from programming techniques.
Compression. Graph compression has been studied for, e.g., social
network analysis [15], subgraph isomorphism [20, 39], graph sim-
ulation [22], reachability and shortest distance [29]. It computes
query-specific equivalence relations by merging equivalent nodes
into a single node. Some compression methods are query preserv-
ing (i.e., lossless), e.g., [22, 29, 39], and can answer particular types
of queries on compressed graphs without decompression.

Our contraction scheme differs from compression in the follow-
ing. (a) It allows multiple applications to share the same contracted
graph. In contrast, compressed graphs are query dependent; no
one supports different applications to run on the same compressed
graph. (b) Contraction guarantees to be lossless, while some com-
pression schemes are lossy, e.g., [20]. (c) Existing algorithms can be
readily adapted to contracted graphs. In contrast, compression often
needs to develop new algorithms, e.g., [39] demands a decompose-
and-join algorithm for subgraph isomorphism.
Summarization. Graph summarization aims to produce an abstrac-
tion or summary of a large graph by aggregating nodes or subgraphs
(see [37] for a survey), classified as follows. (1) Node aggregation,
e.g., GraSS [33] merges node clusters into supernodes labeled with

the number of edges within and between the clusters; it is developed
for adjacency, degree and centrality queries. SNAP [49] generates
an approximate summary of a graph structure by aggregating
nodes based on attribute similarity. (2) Edge aggregation, e.g., [42]
generates a summary by aggregating edges into superedges, with a
bounded number of edges different from the original graph. (3) Sim-
plification: instead of aggregating nodes and edges, OntoVis [47]
drops low-degree nodes, duplicate paths and unimportant node la-
bels. Most summarization methods are lossy, e.g., GraSS and SNAP
retain part of attributes, and OntoVis drops nodes, edges and labels.

Incremental maintenance of summarization has been studied
in [17, 27, 48]. It depends on update intervals [48]; short-period
summarization is space-costly, while long-interval summarization
maymiss updates. To copewith these, [27] aggregates updates into a
graph of “frequent” nodes and edges, and computes an approximate
summary based on all historical updates on entire graph.

Both summarization and contraction schemes aim to provide a
generic graph representation to speed up graph analyses. However,
(1) the contraction scheme is lossless and allows exact answers to be
computed for various classes of queries. In contrast, summarization
is typically lossy and supports at best certain aggregate or approx-
imate queries only. (2) Existing algorithms for query answering
can be readily adapted to contracted graphs, while new algorithms
often have to be developed on top of graph summaries. (3) Con-
tracted graphs can be incrementally maintained with boundedness
and locality, while summarization maintenance requires historical
updates and often operates on the entire graph [27].
Indexing. A variety of indices have been studied for, e.g., subgraph
isomorphism [8, 9, 16, 26, 41], reachability [5, 12, 29, 52] and shortest
distance [13, 36]. Indices are query specific and take extra space.

Our contraction scheme differs from indexing in that it supports
multiple applications on the same contracted graph, while a sepa-
rate index has to be built for each query class. Moreover, it is more
efficient to maintain contracted graphs than indices. This said, the
contraction scheme can be complemented with indices for further
speedup, as demonstrated by SubIso (Section 3.1).

7 CONCLUSION
We have proposed a contraction scheme to make big graphs small,
as a generic optimization scheme for multiple applications to run
on the same graph at the same time. We have shown that the
scheme is generic and lossless. Moreover, it prioritizes up-to-date
data by separating it from obsolete data. In addition, existing query
evaluation algorithms can be readily adapted to compute exact
answers, often without decontracting topological components. Our
experimental results have verified that our scheme is effective.

One topic for future work is to explore what topological struc-
tures to contract for various types of graphs, besides path, star and
clique. Another topic is to recursively apply the contraction scheme,
and build a contraction hierarchy.
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