
The VLDB Journal
https://doi.org/10.1007/s00778-022-00731-7

REGULAR PAPER

Making graphs compact by lossless contraction

Wenfei Fan1,2,3 · Yuanhao Li1 ·Muyang Liu1 · Can Lu2

Received: 4 April 2021 / Revised: 27 September 2021 / Accepted: 30 December 2021
© The Author(s) 2022

Abstract
This paper proposes a scheme to reduce big graphs to small graphs. It contracts obsolete parts and regular structures into
supernodes. The supernodes carry a synopsis SQ for each query classQ in use, to abstract key features of the contracted parts
for answering queries ofQ. Moreover, for various types of graphs, we identify regular structures to contract. The contraction
scheme provides a compact graph representation and prioritizes up-to-date data. Better still, it is generic and lossless. We
show that the same contracted graph is able to support multiple query classes at the same time, no matter whether their queries
are label based or not, local or non-local. Moreover, existing algorithms for these queries can be readily adapted to compute
exact answers by using the synopses when possible and decontracting the supernodes only when necessary. As a proof of
concept, we show how to adapt existing algorithms for subgraph isomorphism, triangle counting, shortest distance, connected
component and clique decision to contracted graphs.We also provide a bounded incremental contraction algorithm in response
to updates, such that its cost is determined by the size of areas affected by the updates alone, not by the entire graphs. We
experimentally verify that on average, the contraction scheme reduces graphs by 71.9% and improves the evaluation of these
queries by 1.69, 1.44, 1.47, 2.24 and 1.37 times, respectively.

Keywords Graph data management · Graph contraction · Graph algorithms · Incremental computation

1 Introduction

There has been prevalent use of graphs in artificial intelli-
gence, knowledge bases, search, recommendation, business
transactions, fraud detection and social network analysis.
Graphs in the real world are often big, e.g., transaction graphs
in e-commerce companies easily have billions of nodes and
trillions of edges. Worse still, graph computations are often
costly, e.g., graph pattern matching via subgraph isomor-
phism is intractable (cf. [42]). These highlight the need for
developing techniques for speeding up graph computations.

B Yuanhao Li
yuanhao.li@ed.ac.uk

Wenfei Fan
wenfei@inf.ed.ac.uk

Muyang Liu
muyang.liu@ed.ac.uk

Can Lu
lucan0811@gmail.com

1 University of Edinburgh, Edinburgh, UK

2 Shenzhen Institute of Computing Sciences, Shenzhen, China

3 BDBC, Beihang University, Beijing, China

There has been a host of work on the subject, either by
making graphs compact, e.g., graph summarization [67] and
compression [12,82], or speeding up query answering by
building indices [81]. The prior work often targets a specific
class of queries, e.g., query-preserving compression [37] and
2-hop labeling [25] are for reachability queries. In practice,
however,multiple applications often run on the same graph at
the same time. It is infeasible to switch compression schemes
or summaries between different applications. It is also too
costly to build indices for each and every query class in use.

Another challenge stems from obsolete data. As a real-life
example, consider graphs converted from IT databases at a
telecommunication company. The databases were developed
in stages over years and have a large schema with hundreds
of attributes. About 80% of the attributes were copied from
earlier versions and have not been touched for years. No one
can tell what these attributes are for, but no one has the gut to
drop them in the fear of information loss. As a result, a large
bulk of the graphs is obsolete. As another example, there are
a large number of zombie accounts in Twitter. As reported by
TheNewYork Times, 71%of LadyGaga’s followers are fake
or inactive, and it is 58% for Justin Bieber. The obsolete data

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-022-00731-7&domain=pdf
http://orcid.org/0000-0002-7501-4007

W. Fan et al.

incur heavy time and space costs and often obscure query
answers.

The challenges give rise to several questions. Is it possi-
ble to find a compact representation of graphs that is generic
and lossless? That is, we want to reduce big graphs to a
substantially smaller form. Moreover, using the same rep-
resentation, we want to compute exact answers to queries
of different classes at the same time. In addition, can the
representation separate up-to-date data from obsolete com-
ponents without loss of information? Can we adapt existing
evaluation algorithms to the compact form, without the need
for redeveloping the algorithms starting from scratch? Fur-
thermore, can we efficiently and incrementally maintain the
representation in response to updates to the original graphs?

Contributions and organization. In this paper, we pro-
pose a new approach to tackling these challenges, by extend-
ing the idea of graph contraction.

(1) A contraction scheme (Sect. 2).We propose a contraction
scheme to reduce big graphs into smaller ones. It contracts
obsolete components and regular structures into supernodes,
and prioritizes up-to-date data. For each query class Q,
supernodes carry a synopsis SQ that records key features
needed for answering queries of Q. As opposed to conven-
tional graph summarization and compression, the scheme is
generic and lossless. A contracted graph retains the same
topological structure for all query classes Q, and the same
synopses SQ work for all queries in the same class Q. Only
SQ may vary for different query classesQ. We identify reg-
ular structures to contract in different types of graphs, and
develop a (parallel) contraction algorithm.

(2) Proof of concept (Sect. 3). We show that existing query
evaluation algorithms can be readily adapted to contracted
graphs. In a nutshell, we extend the algorithms to handle
supernodes. When answering a query Q in Q, we make
use of the synopsis SQ of a supernode if it carries suf-
ficient information for answering Q, and decontract the
supernode only when necessary. We pick five different query
classes: subgraph isomorphism (SubIso), triangle counting
(TriC), shortest distance (Dist), connected component (CC)
and clique decision (CD) based on the following dichotomies:

◦ label-based queries (SubIso) versus non-label based ones
(TriC, Dist, CC, CD);

◦ local queries (SubIso, TriC, CD) versus non-local ones
(Dist, CC); and

◦ various degrees of topological constraints (Dist≺ CC ≺
TriC ≺ CD≺ SubIso).

We show how easy to adapt existing algorithms for these
query classes to contracted graphs, without increasing their
complexity. Better still, all these queries can be answered

without decontraction of topological structures except some
supernodes for obsolete parts.

(3) Incremental contraction (Sect. 4). We develop an incre-
mental algorithm for maintaining contracted graphs in
response to updates to original graphs. Such updates may
change both the topological structures and timestamps (obso-
lete data). We show that the algorithm is bounded [77], i.e.,
it takes at most O(|AFF|2) time, where |AFF| is the size of
areas affected by updates, not the size of the entire (possibly
big) graph. We parallelize the algorithm to scale with large
graphs.

(4) Empirical evaluation (Sect. 5).Using 10 real-life graphs,
we experimentally verify the following. On average, (a)
the contraction scheme reduces graphs by 71.9%, up to
86.0%. (b) Contraction makes SubIso, TriC, Dist, CC and
CD 1.69, 1.44, 1.47, 2.24 and 1.37 times faster, respectively.
(c) The total space cost of our contraction scheme for the
five accounts only for 12.6% of indices for TurboIso [44],
HINDEX [75], PLL [4] and RMC [68]. It is 9.0% when kNN
[92] also runs on the same graph. The synopses for each
take 9.7% of the space. Hence, the scheme is scalable with
the number of applications on the same graph. (d) Contract-
ing obsolete data improves the efficiency of conventional
queries and temporal queries by 1.64 and 1.78 times on aver-
age, respectively. (e) Our (incremental) contraction scheme
scales well with graphs, e.g., it takes 33.1s to contract graphs
of 1.8B edges and nodes with 20 cores.

We survey related work in Sect. 6 and identify research
topics for future work in Sect. 7.

2 A graph contraction scheme

In this section, we first present the graph contraction scheme
(Sect. 2.1). We then identify topological components to
contract for different types of real-life graphs (Sect. 2.2).
Moreover, we develop a contraction algorithm (Sect. 2.3)
and its parallelization (Sect. 2.4).
Preliminaries. We start with basic notations.

Graphs. Assume two infinite sets � and � for labels and
timestamps, respectively. We consider undirected graphs
G = (V , E, L, T), where (a) V is a finite set of nodes, (b)
E ⊆ V × V is a bag of edges, (c) for each node v ∈ V , L(v)

is a label in �; and (d) T is a partial function such that for
each node v ∈ V , if T (v) is defined, it is a timestamp in �

that indicates the time when v or its adjacent edges were last
updated.

Queries. A graph query is a computable function from a
graph G to another object, e.g., a Boolean value, a number, a
graph, or a relation. For instance, a graph pattern matching
query is a graph pattern Q to find the set of subgraphs in

123

Making graphs compact by lossless contraction

(a) (b) (c) (d)

Fig. 1 Graph contraction

G that are isomorphic to pattern Q, denoted by Q(G). A
query class Q is a set of queries of the same “type,” e.g., all
graph pattern queries. We also refer to Q as an application.
In practice, multiple applications run on the same graph G
simultaneously.

2.1 Contraction scheme

A graph contraction scheme is a triple 〈 fC ,S, fD〉, where
(1) fC is a contraction function such that given a graph G,
Gc = fC (G) is a graph deduced from G by contracting
certain subgraphs H into supernodes vH ; we refer to H as the
subgraph contracted to vH , and Gc as the contracted graph
of G by fC ; (2) S is a set of synopsis functions such that for
each query classQ in use, there exists SQ ∈ S that annotates
each supernode vH of Gc with a synopsis SQ(vH); and (3)
fD is a decontraction function that restores each supernode
vH in Gc to its contracted subgraph H .

Example 1 Graph G in Fig. 1a is a fraction of Twitter net-
work. A node denotes a user (u), a tweet (t), a keyword (k),
or a feature of a user such as id (i), name (n), number of
followers (f) and link to other accounts of the same user in
other social networks (l). An edge indicates the following:
(1) (u, u′), a user follows another; (2) (u, t), a user posts a
tweet; (3) (t, t ′), a tweet retweets another; (4) (t, k), a tweet
tags a keyword; (5) (k, k′), two keywords are highly related;
(6) (u, k), a user is interested in a keyword; (7) (i, l), a user
has a feature; or (8) (i, f), a user has f followers.

In G, subgraphs in dashed rectangles are contracted into
supernodes, yielding a contracted graphGc shown in Fig. 1b.
Synopses SSubIso for SubIso are shown in Fig. 1d and are
elaborated in Sect. 3.1. 	

Before we formally define functions fC , fD and synopsis
S, observe the following.

(1) The contraction scheme is generic. (a) Note that
fC ,Gc and fD are application independent, i.e., they remain
the same no matter what query classes Q run on the con-
tracted graphs. (b) While S is application dependent, it is
query independent, i.e., all queries Q ∈ Q use the same
synopses annotated by SQ.

(2) The contraction scheme is lossless due to synopses S
and decontraction function fD . As shown in Sect. 3, an exist-
ing algorithm A for a query class Q can be readily adapted
to contracted graph and computes exact query answers.

We next give the details of fC ,S and fD . We aim to
strike a balance between space cost and query evaluation
cost. When a graph is over-contracted, i.e., when the sub-
graphs contracted to supernodes are too large or too small,
the decontraction cost goes up although the contracted graph
Gc may take less space. Moreover, the more detailed syn-
opses are, the less likely decontraction is needed, but the
higher space overhead is incurred.

(1) Contraction function. Function fC contracts subgraphs
in G into supernodes in Gc. To simplify the discussion, we
contract the following basic structures.

(a)Obsolete component: a connected subgraph consisting
of nodes with timestamps earlier than threshold t0.

(b) Topological component: a subgraph with a regular
structure, e.g., clique, star, path and butterfly.

Different types of graphs have different regular substruc-
tures, e.g., cliques are ubiquitous and effective in social
networks while paths are only effective in road networks.
In Sect. 2.2, we will identify what regular structures H to
contract in different types of graphs.

We contract subgraphs with the number of nodes in the
range [kl , ku] to avoid over-contraction (see Sects. 2.3 and 5
for the choices).

Contraction function fC maps each node v in graph G
to a supernode in contracted graph Gc, which is either a
supernode vH if v falls in one of the subgraphs H in (a) or
(b), or node v itself otherwise.

In Example 1, function fC maps nodes in each dashed
rectangle to its corresponding supernode, e.g., fC (i1) =
fC (n1) = fC (f1) = fC (l1) = vH1, fC (k1) = . . . =
fC (k5) = vH2 and fC (t2) = t2.
Obsolete components help us prioritize up-to-date data,

and topological ones reduce unnecessary checking when
answering queries. As shown in Sect. 5, on average the first
three regular structures and obsolete components contribute
18.3%, 14.9%, 2.8% and 63.1% to the contraction ratio, and

123

W. Fan et al.

speeds up query answering by 1.61, 1.44, 1.04 and 1.71 times,
respectively.

(2) Contracted graph. For a graph G, its contracted graph
by fC is Gc = fC (G) = (Vc, Ec, f ′

C), where (a) Vc is a
set of supernodes mapped from G as remarked above; (b)
Ec ⊆ Vc × Vc is a bag of superedges, where a superedge
(vH1, vH2) ∈ Ec if there exist nodes v1 and v2 such
that fC (v1) = vH1, fC (v2) = vH2 and (v1, v2) ∈ E ;
and (c) f ′

C is the reverse function of fC , i.e., f ′
C (vH) =

{(v, L(v)) | fC (v) = vH }.
In Example 1, function f ′

C maps each supernode in
contracted graph Gc of Fig. 1b back to the nodes in the cor-
responding rectangle in Fig. 1a, e.g., f ′

C (vH1) = {(i1, id), (n1,
name), (f1, follower), (l1, link)}.

Intuitively, the reverse function f ′
C recovers the contracted

nodes and their associated labels, while the decontraction
function fD restores the topological structures of the con-
tracted subgraphs.

(3) Synopsis. For each query classQ in use, a synopsis func-
tion SQ is in S, to retain features necessary for answering
queries inQ. For instance, whenQ is the class of graph pat-
terns, at each supernode vH , SQ(vH) consists of the type of
vH and the most distinguished features of fD(vH), e.g., the
central node of a star and the sorted node list of a path. We
will give more details about SQ in Sect. 3. As will also be
seen there, f ′

C and synopses SQ taken together often suffice
to answer queries in Q, without decontraction.

Note that not every synopsis SQ has to reside in memory.
We load SQ to memory only if its corresponding application
Q is currently in use.

(4) Decontraction. Function fD restores contracted sub-
graphs. For supernode vH , fD(vH) restores the edges
between the nodes in f ′

C (vH), i.e., the subgraph induced by
f ′
C (vH). For superedge (vH1, vH2), fD(vH1, vH2) recovers

the edges between f ′
C (vH1) and f ′

C (vH2).
That is, the contracted subgraphs and edges are not

dropped. They can be restored by fD when necessary. In
light of fD , the scheme is guaranteed lossless.

For example, decontraction function fD restores the sub-
graph in Fig. 1a from supernodes, e.g., fD(vH3) is a star
with central node u10 and leaves u6, u7, u8 and u9. It
also restores edges from superedges, e.g., fD(vH2, vH5) =
{(t1, k1), (k1, k6), (k2, k6)}.

2.2 Identifying regular structures

We now identify what regular structures to contract for dif-
ferent types of real-life graphs.

Different types of graphs. We investigated the following
10 different types of graphs: (1) social graphs: Twitter [70]
and LiveJournal [94]; (2) communication networks:WikiTalk

(a) (c) (e)

(b) (d) (f)

Fig. 2 Frequent regular structures

[62]; (3) citation networks: HepTh [63] and Patent [63]; (4)
Webgraphs:Google [64] andNotreDame [5]; (5) knowledge
graphs: DBpedia [61] and WordNet [71]; (6) collaboration
networks: DBLP [2] and Hollywood [15]; (7) biomedical
graphs: Mimic [51]; (8) economic networks: Poli [80]; (9)
chemical graphs: Enzymes [80]; and (10) road networks:
Traffic [1].

Regular structures. For a certain type of graphsG, we apply
a subgraph mining model M to G. It returns a set of fre-
quent subgraphs M(G) = {g1, g2, ...} of G together with
the support of each gi . Support metrics may vary in differ-
ent mining models, e.g., GRAMI [33] adopts minimum image
based metric [19]. We pick subgraphs whose supports are
above a threshold ts .

As an example, we adopt a subgraph miner GRAMI [33]
asM. GRAMI discovers all the frequent subgraphs in G that
have a support above a predefined threshold, which are then
manually inspected. We pick gi ’s with at least 4 nodes to
avoid over-contraction.

As shown in Fig. 2, we found the following 6 structures in
the 10 types of graphs: (a) clique: a fully-connected graph;
(b) star: a single central node with neighbors; (c) path: a
sequence of connected nodes with no edges between the
head and tail (its two endpoints); (d) claw: a special star in
which the central node has exactly 3 neighbors, denoted as
its leaves; claws are quite frequent and are hence treated sep-
arately; (e) diamond: two triangles that share two endpoints;
and (f) butterfly: two triangles sharing a single node.

Note that within these structures H , the only edges
allowed are those that form H . Moreover, edges are allowed
from each node in H to nodes outside of H . The only excep-
tion is that for a path, only the two endpoints can connect to
other nodes in the graph.

123

Making graphs compact by lossless contraction

Table 1 Common structures in
different types of graphs

Graph type Regular structure

Social graphs Clique, star, diamond, butterfly, path

Communication networks Star

Citation networks Clique, star, diamond, butterfly

Web graphs Star, clique, diamond

Knowledge graphs Star, claw

Collaboration networks Clique, star, diamond

Biomedical graphs Star, clique, path

Economic networks Star

Chemical graphs Claw, path

Road networks Star, claw, path

We summarize how these structures appear in the 10 types
of graphs in Table 1, ordered by supports and importance
from high to low. Note that different graphs have different
frequent regular substructures. Cliques, stars and diamonds
often occur in social graphs, while in road networks, stars,
claws and paths are frequent.

Note that frequent pattern mining is conducted once for
each type of graphs offline, not for each input graph. For
instance, we always contract cliques, stars, diamonds, but-
terflies and paths for social graphs.

2.3 Contraction algorithm

We next present an algorithm to contract a given graph G,
denoted as GCon and shown in Fig. 3.

A tricky issue is that the contracted graphs depend on the
order on the regular structures contracted. For example, if we
contract diamonds first in the Twitter graph G0 of Fig. 1a,
then it contracts {t2, k1, k5, k3} as a diamond; after this there
are no cliques in G0. In contrast, if cliques are contracted
first, then {k1, k2, k3, k4, k5} is extracted. As suggested by
M, cliques “dominate” in social graphs and hence should be
“preserved” when contracting G0.

We adopt a deterministic order to ensure that important
structures are contracted earlier and hence preserved. We
order the importance of different types of regular structures
in a graph G by their supports: the higher the support is,
the more important the topology is. We denote by T (G) its
ordered set of regular structures to contract in Table 1. Note
that T (G) is determined by the type of G, e.g., social graphs,
and is learned once offline regardless of individual G.

Given a graph G, algorithm GCon first contracts all obso-
lete data into components to prioritize up-to-date data. Each
obsolete component is a connected subgraph that contains
only nodes with timestamps earlier than a threshold t0. It is
extracted by bounded breadth-first-search (BFS) that stops
at non-obsolete nodes. The remaining nodes are then either

Fig. 3 Algorithm GCon

contracted into topological components, or are left as single-
tons.

Putting these together, we present the main driver of algo-
rithmGCon in Fig. 3. Given a graphG, a timestamp threshold
t0 and range [kl , ku], it constructs functions fC and fD of
the contraction scheme. It first contracts nodes with times-
tamps earlier than t0 into obsolete components (line 1). It
then recalls the list T (G) of topological components to con-
tract based on the type of graph G (line 2). Next, GCon
contracts topological components into supernodes following
order T (G), and deduces fC and fD accordingly (lines 3-5).
Each topological component consists of only uncontracted
nodes. More specifically, it does the following.

(1) It extracts a clique by repeatedly selecting an un-
contracted node that connects to all selected ones, subject
to pre-selected size bounds kl and ku (see below).

(2) It extracts a star by first picking a central node vc, and
then repeatedly selecting an un-contracted node as a leaf that
is (a) connected to vc and (b) disconnected from all selected
leaves, again subject to kl and ku .

(3) For paths, it first extracts intermediate nodes having
only two neighbors that are not linked by an edge. It then
finds a path consisting of only the intermediate nodes, along
with two neighbors of the endpoints.

(4) For diamonds, it first selects an edge (u, v) and then
picks x and y that are (a) connected to both u and v, and (b)
pairwise disconnected.

123

W. Fan et al.

(5) For butterflies, it first selects a node v that has a degree
at least 4. It then checks whether there exist four neighbors
u, x, y, z of node v such that exactly (u, x, v) and (y, z, v)

form two triangles.
(6) For claws, it selects nodes with exactly 3 neighbors,

and there is no edge between any two neighbors.
As remarked earlier, the remaining nodes that cannot be

contracted into any component as above are treated as sin-
gleton, i.e., mapped to themselves by fC .

Example 2 Assume that timestamp threshold t0 for graph G
of Fig. 1a is larger than timestamps of nodes i1, n1, f1 and
l1, but is smaller than those of remaining nodes. Algorithm
GConworks as follows. (1) It first triggers bounded BFS, and
contracts i1, n1, f1 and l1 into an obsolete component vH1

in Gc. (2) Since G is a social network, it contracts clique,
star, diamond, butterfly and path in this order. (3) It builds a
clique vH2 with nodes k1, …, k5. (4) It picks u10 and u5 as
central nodes for a star, and makes a star vH3 consisting of
u6, u7, u8, u9, u10. Nodes u5, u1, u3 cannot make a star due
to lower bound kl = 4. (5) No diamond exists. (6) It picks
u5 as central node for a butterfly and makes a butterfly vH4.
(7) It finds k7, k8 and k9 as candidate intermediate nodes for
paths, and contracts them into a path vH5 with endpoints k6
and t1. (8) Node t2 is left as a singleton, and is mapped to
itself by fC . 	

Range [kl , ku]. We contract an (obsolete/topological) com-
ponent H such that the number of its nodes is in the range
[kl , ku]. The reason is twofold. (1) If H is too small, a con-
tracted graphwould have an excessive number of supernodes;
this leads to over-contraction with high overhead for possi-
ble decontraction and low contraction ratio. Thus, we set
a lower bound kl . (2) We set an upper bound ku to avoid
overlarge components and excessive superedge decontrac-
tion. We experimentally find that the best kl and ku are 4 and
500, respectively.

Diamonds, butterflies and claws have a fixed size with 4,
5 and 4 nodes, respectively, in the range above.

Complexity. Algorithm GCon takes at most O(|G|2) time.
Indeed, (1) obsolete components can be contracted in O(|G|)
time via edge-disjoint bounded BFSs; (2) paths can be built in
O(|G|) time; (3) it takes O(|G|) time to contract each clique
and O(|G|2) time for all cliques; and (4) similarly, the other
regular structures can be contracted in O(|G|2) time.

Properties. Observe the following about the contraction
scheme. (1) It is lossless and is able to compute exact query
answers. (2) It is generic and supports multiple applications
on the same contracted graph at the same time. This is often
necessary. For instance, on average 10 classes of queries
run on a graph simultaneously in GDB benchmarks [32].
(3) It prioritizes up-to-date data by separating it from obso-
lete data. (4) It improves performance. (a) As discussed in

Fig. 4 Algorithm PCon

Sect. 5, |Gc| � |G|. In particular, each obsolete component
is contracted into a single supernode. (b) Decontraction is
often not needed. As shown in Sect. 3, none of SubIso, CD,
TriC, Dist and CC needs to decontract any topological com-
ponent, and for TriC, Dist and CC, even obsolete components
do not need decontraction.

2.4 Parallel contraction algorithm

We next parallelize algorithm GCon, denoted by PCon, to
speed up the contraction process. Note that contraction is
conducted once offline, and is then incrementally maintained
in response to updates (Sect. 4).

Parallel setting. Assume a master (processor) M0 and n
workers (processors) P1, . . . , Pn . GraphG is partitioned into
n fragments F1, . . . , Fn by an edge-cut partitioner [17,55],
and the fragments are distributed to n workers P1, . . . , Pn ,
respectively. We adopt the BSP model [88], which sepa-
rates iterative computations into supersteps and synchronizes
states after each superstep.

Parallel contraction algorithm PCon. As shown in Fig. 4,
the idea of PCon is to leverage data-partitioned parallelism.
PCon first conducts GCon locally on each fragment in par-
allel, and then contracts uncontracted “border nodes,” i.e.,
nodes with edges crossing fragments, by building neighbors
of at most ku uncontracted nodes, referred to as uncontracted
neighbors, which are subgraphs with uncontracted nodes.

More specifically, algorithm PCon works as follows.
(1) All workers run GCon on its local fragment in parallel

(line 1), since after all, each fragment Fi is a graph itself.
In contrast with single-thread GCon, workers do not con-

tract mirror nodes, i.e., nodes assigned to other fragments
with edges linked to the local fragment. Adopting edge-cut
partition, each node ofG is assigned to a single fragment and
is contracted at most once during GCon.

(2) PCon contracts “border nodes” (line 2-3). For each
border node v, if v is not contracted, PCon builds it uncon-
tracted neighbors. Such neighbors are identified in parallel,
coordinated by master M0.

123

Making graphs compact by lossless contraction

(3) Master M0 merges overlapped neighbors into one, and
distributes disjoint ones to n workers (line 4-5). In this way,
PCon reduces communication cost and speeds up the process
when contracting border nodes.

(4) Each worker contracts its assigned uncontracted-
neighbors of border nodes, in parallel (line 6).

One can verify that each node v in G is contracted into at
most one supernode vH . The graph Gc contracted by PCon
may be slightly different from that of GCon since border
nodes may be contracted in different orders. One can fix this
by repeating steps (1)–(4) for each of topological components
following the order T (G). Nonetheless, we experimentally
find that the differences are not substantial enough to worth
the extra cost. Moreover, the contracted graphs of PCon are
ensured compact, i.e., they cannot be contracted further.

3 Proof of concept

In this section, we show that existing query evaluation algo-
rithms can be readily adapted to the contracted graphs. As
a proof of concept, we pick five query classes: (1) graph
pattern matching SubIso via subgraph isomorphism (labeled
queries with locality); (2) triangle counting TriC (un-labeled
queries with locality); (3) shortest distance Dist (un-labeled
and non-local queries); (4) connected component CC (un-
labeled queries without locality); and (5) clique decision CD
(un-labeled queries with locality). Among these, subgraph
isomorphism and clique decision are intractable (cf. [42]).

Informally, when answering a query Q ∈ Q, we check
whether the synopsis SQ(vH) at a supernode vH has enough
information for Q; it uses SQ(vH) directly if so; other-
wise it decontracts superedges adjacent to vH or restores
the subgraph of vH via decontraction function fD . As will
be seen shortly, SQ(vH) often provides enough informa-
tion to process Q at vH as a whole or safely skip vH .
Thus, it suffices to answer queries in the five classes by
decontracting superedges, without decontracting any topo-
logical components. Here decontraction fD(vH1, vH2) of a
superedge (vH1, vH2) restores the edges between f ′

C (vH1)

and f ′
C (vH2) (Sect. 2).

The main result of this section is as follows.

Theorem 1 Using linear synopsis functions,
(1) for each of SubIso and CD, there are existing algo-

rithms that can be adapted to compute exact answers on
contracted graphs Gc, which decontract only supernodes of
obsolete components and superedges between supernodes,
not any topological components;

(2) for TriC and Dist, there are existing algorithms that
can be adapted to Gc and decontract no supernodes, neither
topological nor obsolete components; and

(3) for CC, there are existing algorithms that can be
adapted to Gc and decontract neither supernodes (topolog-
ical and obsolete) nor superedges. 	

Below we provide a constructive proof for Theorem 1
by adapting existing algorithms of the five query classes to
contracted graphs one by one.

3.1 Graph patternmatching with contraction

We start with graph pattern matching (SubIso).
Preliminaries. We first review basic notations.
Pattern. A graph pattern is defined as a graph Q = (VQ , EQ ,
LQ), where (1) VQ is a set of pattern nodes, (2) EQ is a set
of pattern edges, and (3) LQ is a function that assigns a label
LQ(u) to each u ∈ VQ .

We also investigate temporal patterns (Q, t), where Q is
a pattern as above and t is a given timestamp.

To simplify the discussion,we consider connectedpatterns
Q. This said, our algorithm can be adapted to disconnected
ones. We denote by u, v pattern nodes in pattern Q, and by
x, y nodes in graph G. A neighbor of node v is a node such
that (u, v) ∈ EQ .
Pattern matching. A match of pattern Q in graph G is a
subgraph G ′ = (V ′, E ′, L ′, T ′) of G that is isomorphic to
Q, i.e., there exists a bijective function h : VQ → V ′ such
that (1) for each node u ∈ VQ , LQ(u) = L(h(u)); and
(2) e = (u, u′) is an edge in pattern Q iff (if and only if)
(h(u), h(u′)) is an edge in graph G. We denote by Q(G) the
set of all matches of pattern Q in graph G.

Amatch of a temporal pattern (Q, t) in graphG is a match
G ′ in Q(G) such that for each node v in G ′, T ′(v) > t , i.e.,
a match of (conventional) pattern Q in which all nodes have
timestamps later than t . We denote by Q(G, t) all matches
of (Q, t) in G.

The graph pattern matching problem, denoted by SubIso,
is to compute, given a pattern Q and a graphG, the set Q(G)

of matches. Similarly, the temporal matching problem is to
compute Q(G, t) for a given temporal pattern (Q, t) and a
graph G, denoted by SubIsot .

Graph pattern matching is widely used in graph queries
[6,40,79,90] and graph dependencies [36,39].

Note that (1) patterns Q are labeled, i.e., nodes are
matched by labels. Moreover, (2) Q has the locality, i.e.,
for any match G ′ of Q in G and any nodes v1, v2 in G ′, v1
and v2 are within dQ hops when treating G ′ as undirected.
Here dQ is the diameter of Q, i.e., the maximum shortest
distance between any two nodes in Q.

The decision problem of pattern matching isNP-complete
(cf. [42]); similarly for temporal matching. A variety of algo-
rithms have been developed for SubIso, notably TurboIso
[44] with indices and VF2 [28] without index. Both TurboIso

123

W. Fan et al.

and VF2 can be adapted to contracted graphs as characterized
in Theorem 1.

We give a constructive proof for TurboIso, because (1)
it is one of the most efficient algorithms for subgraph iso-
morphism and is followed by other SubIso algorithms e.g.,
[14,78], and (2) it employs indexing to reduce redundant
matches; by adapting TurboIso we show that the indices for
SubIso can be inherited by contracted graphs, i.e., contraction
and indexing complement each other. The same algorithm
works for temporal matching. The proof for VF2 is simpler
(not shown).

Below we first present synopses for SubIso (Sect. 3.1.1),
which are the same for both VF2 and TurboIso. We then
show how to adapt algorithm TurboIso to contracted graphs
(Sect. 3.1.2)

3.1.1 Contraction for SubIso

Observe that topological components have regular structures.
The idea of synopses is to store the types and key features of
regular structures so that we could check pattern matching
without decontracting any supernodes of topological com-
ponents.

The synopsis of a supernode vH for query class SubIso is
defined as follows:

◦ clique: vH .type = clique;
◦ star: vH .type = star, vH .c records its central node;
◦ path: vH .type = path, vH .list = 〈u1, . . . , u|vc|〉, storing

all the nodes on the path in order;
◦ diamond: vH .type = diamond, vH .s1 and vH .s2 store the
two share nodes of the two triangles;

◦ butterfly: vH .type =butterfly, vH .s records the node
shared by the two triangles, and vH .e stores the two dis-
joint edges;

◦ claw: vH .type =claw, vH .c stores the central node and
vH .si (i ∈ [1, 3]) record its three neighbors;

◦ obsolete component: vH .type = obsolete; and
◦ each component maintains vH .t = max{T (v) | v ∈

f ′
C (vH)}, i.e., the largest timestamp of its nodes.

Node labels are stored in the reverse function f ′
c of the

contraction function fc (see Sect. 2.1).
For instance, the synopsis SSubIso(vH) for each supernode

vH in the contracted graph Gc of Fig. 1b is given in Fig. 1d.
Note that SSubIso only stores the synopses of the regular struc-
tures contracted in a graph.
Properties. The synopses in SSubIso have two properties. (1)
Taken with the reverse function f ′

C of fC , the synopsis of
a supernode vH suffices to recover topological component
H contracted to vH . For instance, given the central node
and leaf nodes, a star can be uniquely determined. As a
result, no supernode decontraction is needed for topologi-

Fig. 5 Algorithm TurboIso

cal components. (2) The synopses can be constructed during
the traversal of G for constructing contracted graph Gc, as a
byproduct.

We remark that the design of synopses needs domain
knowledge. This said, (1) users only need to develop syn-
opses for their applications in use, not exhaustively for all
possible query classes; and (2) synopsis design is no harder
than developing indexing structures.

3.1.2 Subgraph isomorphism

Belowwefirst review algorithm TurboIso [44] and then show
how to adapt TurboIso to contracted graphs.
TurboIso. As shown in Fig. 5, given a graph G and a pattern
Q, TurboIso computes Q(G) as follows. It first rewrites pat-
tern graph Q into a tree Q′ by performing BFS from a start
vertex vs (lines 1-2). Here each vertex in Q′ is a neighbor-
hood equivalence class (NEC) that contains pattern nodes in
Q having identically matching data vertices. Then, for each
start vertex xs of each region, TurboIso constructs a candi-
date region (CR0), i.e., an index thatmaintains candidates for
each NEC vertex in Q′, via DFS from xs (lines 3-4). If valid
candidates are found, i.e., C R0 = ∅, TurboIso enumerates
all possible matches that map xs to vs following a match-
ing order O (lines 5-6). The matching order O is decided
by sorting the leaf NEC vertices based on the number of
their candidate vertices. It expands Q(G)with valid matches
identified in the process (line 7).

Algorithm SubAc. TurboIso can be easily adapted to con-
tracted graph Gc, denoted by SubAc. As shown in Fig. 6,
SubAc adopts the same logic as TurboIso except minor adap-
tations in ExploreCR (line 4) and SGSearch (line 7) to deal
with supernodes. To see these, let H be the subgraph con-
tracted to a supernode vH .

(1) ExploreCR. It adds a supernode vH as a candidate for
a node u in Q if some node in vH can match u, which is
checked by SSubIso(vH) and f ′

C (vH). It also prunes CR0

based on vH .type, e.g., a node u in Q cannot match inter-
mediate nodes on paths if u is in some triangle in Q; and u

123

Making graphs compact by lossless contraction

Fig. 6 Algorithm SubAc

matches intermediate nodes on a path only if its degree is no
larger than 2. No supernodes or superedges are decontracted.

(2) SGSearch. Checking the existence of an edge (x, y)
that matches edge (vx , vy) ∈ Q is easy with synopses SSubIso
and functions f ′

C and fD . Here x (resp. y) denotes a node
in supernode vH = fC (x) (resp. vH = fC (y)) in the can-
didates of vx (resp. vy). When fC (x) = fC (y) = vH , (a)
if vH .type=star or claw, (x, y) exists only if x = vH .c or
y = vH .c; (b) if vH .type = clique, (x, y) always exists; (c)
if vH .type=path, (x, y) exists if x and y are next to each
other in vH .list; (d) if vH .type=diamond, (x, y) exists if
at least one of x and y is the shared node vH .s1 or vH .s2;
and (e) if vH .type=butterfly, (x, y) exists if x and y are not
endpoints of the two disjoint edges in vH .e simultaneously.
Hence, no topological component is decontracted by fD . (f)
If vH .type=obsolete, it checks whether none of the labels in
Q is in f ′

C (vH); it safely skips vH if so, and decontracts vH
by fD to check the existence of (x, y) otherwise. If x and y
match distinct supernodes, it suffices to decontract superedge
(fC (x), fC (y)) by fD .

Example 3 Query Q in Fig. 1c is to find potential friendship
between users based on the retweet and shared keywords
in their posted tweets. Nodes u and u′ both have the same
label u. Given Q, SubAc first chooses k as the start node,
to which only vH2 and vH5 can match. For vH2, ExploreCR
adds vH5 and t2 as candidates for t and t ′, vH3 as candidate
for u, and vH3 and vH4 as candidates for u′. Note that for
obsolete supernode vH1, none of the labels in Q is covered by
f ′
C (vH1); hence, vH1 can be safely skipped. SGSearch finds

that t2 matches t since there exists no edge between vH3 and
vH5. Thus, it matches k, t, u, t ′, u′ with k1, t2, u6, t1, u4.

Similarly for vH5, ExploreCR adds vH5 and t2 as candi-
dates for t and t ′, vH4 as candidate for u, and vH3 and vH4

for u and u′. Next, SGSearch finds that u4 and t1 match u and
t by decontracting superedge (vH3, vH4); then, k9 matches
k. However, since k9 is an intermediate node of path vH3,
no match for t ′ can be found. Hence, k, t, u, t ′, u′ match
k1, t2, u6, t1, u4. 	

Analyses. One can easily verify that SubAc is correct since
it has the same logic as TurboIso except that it incorpo-
rates pruning strategies.While they have the sameworst-case
complexity, SubAc operates on Gc, much smaller than G
(see Sect. 5); moreover, its ExplorCR saves traversal cost and
SGSearch saves validation cost by pruning invalid matches.
Temporal pattern matching. Algorithm SubAc can also
take a temporal pattern (Q, t) as part of its input, instead of
Q. The only major difference is atCR0 construction (line 4),
where a supernode vH is safely pruned if vH .t ≤ t , when
vH .type is obsolete or not. It skips a match if it contains a
node v with T (v) ≤ t .

3.2 Triangle counting with contraction

Wenext study triangle counting [26,47], which has been used
in clustering [91], cycle detection [48] and transitivity [74].
In graphG, a triangle is a clique of three vertices. The triangle
counting problem is to find the total number of triangles in
G, denoted by TriC.

Similar toSubIso,TriC is localwith diameter 1. In contrast,
it consists of a single query and is not labeled.

We adapt algorithm TriA of [26] for TriC to contracted
graphs, since it is one of the most efficient TriC algorithms
[47], and it does not use indexing (as a different example
from TurboIso). We show that for TriC, the adapted algo-
rithm needs to decontract no supernodes, neither topological
components nor obsolete parts.

3.2.1 Contraction for TriC

Observe that contraction function fC on G is equivalent to
node partition of G, such that two nodes are in the same
partition if they are contracted into the same supernode. The
idea of synopses for TriC is to pre-count triangles with at least
two nodes in the same partition, without enumerating them.
As will be seen shortly, this allows us to avoid supernode
decontraction for both topological and obsolete components.

Consider a triangle (u, v, w) in G that is mapped to Gc

via fC . We have the following cases.
(1) If fC (u) = fC (v) = fC (w) = vH , where supernode

vH contracts a subgraph H with node set V (H), i.e., when
the three nodes of a triangle are contracted into the same
supernode, then (a) when H is a clique, there are

(|V (H)|
3

)

triangles inside H ; (b) when H is a diamond or a butterfly,
there are 2 triangles inside H ; (c) when H is an obsolete
component, then the number of triangles inside H can be
pre-calculated, denoted by tH ; and (d) there are no triangles
inside H otherwise.

(2) If fC (u) = fC (v) = vI , fC (w) = vJ , where vI and
vJ contract subgraphs I and J , respectively, i.e., if two nodes
of a triangle are contracted into the same supernode, then (a)
when I is a clique, thenw leads to

(k
2

)
triangles, where k is the

123

W. Fan et al.

number of the neighbors of w in I . Denote by t Iw the number
of such triangles in a clique neighbor I of w. (b) Subgraph I
cannot be a path since intermediate nodes on a path are not
allowed to connect to nodes outside I . (c) Otherwise, nodes
u and v yield k triangles, where k is the number of common
neighbors of u and v in J . We denote by t Ju,v the number of
such triangles in a common neighbor J of u and v.

(3) If fC (u) = vI , fC (v) = vJ , fC (w) = vK , i.e., when
the three nodes of a triangle are contracted into different
supernodes, we count such triangles online and it suffices to
decontract only superedges, not supernodes.

Synopsis STriC(vH) of supernode vH for TriC extends
SSubIso(vH) with an extra tag tc, which records the num-
ber of triangles pre-calculated as above. More specifically,
vH .tc is computed as follows. Below we use u and v to range
over nodes in V (H), I to range over clique neighbors of u,
and J to range over common neighbors of u, v. We define
t Iu , tH and t Ju,v as above.

In a clique H , there are (1)
(|V (H)|

3

)
triangles; (2) each

node u ∈ H has t Iu triangles with its clique neighbor I ;
hence, vH .tc = (|V (H)|

3

) + �u�I t Iu . We can calculate vH .tc
similarly for other regular structures. Thus,

◦ clique: vH .tc = (|V (H)|
3

) + �u�I t Iu ;
◦ star: vH .tc = �u�I t Iu + �u�J t JvH .c,u ;
◦ path: vH .tc = �I t Iu1 + �I t Iu|V (H)| , where u1 and u|V (H)|
are the first and last node on the path;

◦ claw: vH .tc = �u�I t Iu + �u,v�J t Ju,v;
◦ diamondandbutterfly:vH .tc = 2+�u�I t Iu+�u,v�J t Ju,v ,
◦ obsolete: vH .tc = tH + �u�I t Iu + �u,v�J t Ju,v .

Synopses STriC also share the properties of SSubIso.

Example 4 In the contracted graph Gc of Fig. 1b, only vH2

contracts a clique, denoted by I . Synopsis STriC(vH) of a
supernode vH extends SSubIso(vH) with vH .tc: (1) for vH1,
(a) H1 contracted to vH1 contains no triangles; thus, tH1 = 0;
(b) I is not a neighbor of any node u in V (H1); thus,
t Iu = 0; and (c) nodes in V (H1) have no common neigh-
bors, i.e., no J exists for any connected u, v ∈ V (H1); thus,
t Ju,v = 0. Hence, vH1.tc = 0. (2) For vH2, vH2.type=clique,
|V (H2)| = 5 and no other supernodes in Gc are cliques.
Hence, vH2.tc = 10. (3) For vH3, u6 and u9 have only 1
neighbor in clique I ; thus, t Iu = 0; similarly, no J exists for
any leaf u and vH3.c; thus, t JvH3.c,u = 0. Hence, vH3.tc = 0.
(4) Similarly, vH4.tc = 2, vH5.tc = 1 and t2.tc = 1. 	

3.2.2 Triangle counting

We now adapt algorithm TriA [26] to contracted graphs. The
adapted algorithm is referred to as TriAc.
Algorithm TriA. Given a graph G, TriA assigns distinct num-
bers to all the nodes in G. It then enumerates triangles for

each edge (u, v) by counting the common neighbors w of u
and v such that w < u and w < v.
Algorithm TriAc. On a contracted graph Gc with superedges
decontracted, TriAc works in the sameway as TriA except that
at a supernode vH (for both topological and obsolete com-
ponents), it simply accumulates vH .tcwithout decontraction
or enumeration. It only restores superedges when necessary.

Example 5 From synopsis STriC, TriAc directly finds 14 trian-
gles. In Gc, it finds two additional triangles (u6, t2, k1) and
(t1, t2, k1) by restoring superedges. Thus, it finds 16 trian-
gles in G. No supernodes of either topological or obsolete
components are decontracted. 	

Analyses. One can verify that TriAc is correct since it counts
all triangles in G once and only once. It speeds up TriA since
it works on a smaller contracted Gc.
Temporal triangle counting.AlgorithmTriAc canbe adapted
to count triangles with timestamp later than a given time t . It
prunes a supernode vH if vH .t ≤ t , and drops a triangle if it
has a node v with T (v) ≤ t .

3.3 Shortest distance with contraction

We next study the shortest distance problem.
Shortest distance. Consider an undirected weighted graph
G = (V , E, L, T ,W) with additional weight W ; for each
edge e, W (e) is a positive number for the length of the
edge. In a graph G, a path p from v0 to vk is a sequence
〈v0, v1, . . . , vk〉 of nodes such that (vi , vi+1) ∈ E for all
0 ≤ i < k. The length of a path p = (v0, . . . , vk) in G is
simply sumi∈[1,k]W (vi−1, vi).

The shortest distance problem, denoted byDist, is to com-
pute, given a pair (u, v) of nodes in G, the shortest distance
between u and v, denoted by d(u, v) [4,25,31].

Shortest distance has a wide range of applications,
e.g., socially-sensitive search [89,93], influential community
detection [9,56] and centrality analysis [16,18].

As opposed to SubIso, shortest distance queries are unla-
beled, i.e., the value of a query answer d(u, v) does not
depend on labels. In contrast with SubIso and TriC, Dist is
non-local, i.e., there exists no d independent of the input
graph G such that d(u, v) < d.

We adapt Dijkstra’s algorithm [31] to contracted graphs,
denoted by Dijkstra, which is one of the best known algo-
rithms for Dist. Just like TriC, the adapted algorithm for Dist
decontracts no supernodes, neither topological components
nor obsolete parts.

3.3.1 Contraction for Dist

A path between nodes u and v can be decomposed into (1)
edges between supernodes, and (2) edgeswithin a supernode.
The idea of synopses for Dist is to pre-compute the shortest

123

Making graphs compact by lossless contraction

distances within supernodes to avoid supernode decontrac-
tion, for both topological and obsolete components. Edges
between supernodes are recovered by superedge decontrac-
tion when necessary.

Suppose that v1 and v2 are nodes mapped to supernode
vH by fC , i.e., fC (v1) = fC (v2) = vH . We compute
the shortest distance for (v1, v2) within the subgraph H
contracted to vH , denoted by dvH (v1, v2). The synopsis
SDist(vH) extends SSubIso(vH) with a tag dis that is a set
of triples (v1, v2, dvH (v1, v2)) for a path between v1 and v2
within vH , based on vH .type:

◦ clique: vH .dis = {(v1, v2, dvH (v1, v2))} for all pairs of
v1, v2∈ f ′

C (vH);
◦ path: vH .dis = {(u1, u| f ′

C (vH)|, �1≤i<| f ′
C (vH)|W (ui ,

ui+1))}, i.e., it records the path itself;
◦ diamond, butterfly and obsolete components: vH .dis =

{(v1, v2, dvH (v1, v2)) | v1, v2∈ f ′
C (vH)}.

In practice, the number of nodes in most contracted sub-
graphs is far below the upper bound ku . Indeed, diamonds
and butterflies have a constant size, and we find that a clique
(resp. star, path and obsolete component) typically contains
6.5 (resp. 7.3, 4.1 and 49.2) nodes. Hence, the size of a syn-
opsis is fairly small. Note that the upper bound ku should
be larger than typical sizes of components, since large com-
ponents exist and may be more powerful for accelerating
computations.

Example 6 Assume W (u, v) = 1 for all edges (u, v) in
graph G of Fig. 1a. Then, for supernodes in the contracted
graph of Fig. 1b, (1) vH1.dis = {(i1, f1, 1), (i1, n1, 1),
(i1, l1, 1), (f1, n1, 2), (f1, l1, 2), (n1, l1, 2)}; (2) vH2.dis =
{(ki , k j , 1) | 1 ≤ i < j ≤ 5}; (3) vH4.dis =
{(u1, u2, 1), (u1, u5, 1), (u1, u3, 2), (u1, u4, 2), . . .}; and
finally, (4) vH5.dis = {(k6, t1, 4)}. 	

3.3.2 Shortest distance

We adapt algorithm Dijkstra [31] to contracted graphs Gc,
and refer to the adapted algorithm as DisAc.
Algorithm Dijkstra. Given a graph G and a pair (u, v) of
nodes, Dijkstra finds the shortest distances from u to nodes
in G in ascending order, and terminates as soon as d(u, v)

is determined. It maintains a set S of nodes whose shortest
distances from u are known; it initializes distance estimates
d(u) = 0, and d(w) = ∞ for other nodes. At each step,
Dijkstra moves a node w from V \ S to S that has minimal
d(w), and updates distance estimates of nodes adjacent to w

accordingly.
Algorithm DisAc. DisAc is the same as Dijkstra except
minor changes to updating distance estimates. When mov-
ing a node w from V \ S to S, suppose that vH is the

supernode to which w is mapped, i.e., fC (w) = vH . DisAc

updates distance estimates d(w′) for w′ ∈ f ′
C (vH) as fol-

lows: (1) if vH .type is clique, butterfly, diamond or obsolete,
update d(w′) by d(w) + dvH (w,w′) using vH .dis; (2) if
vH .type = star or claw, update d(w′) by d(w)+dvH (w,w′),
where dvH (w,w′) can be easily computed by synopsis; (3)
if vH .type = path, update d(w′) by d(w) + dvH (w,w′) for
the other endpointw′ using vH .dis; in these cases, no supern-
ode (for topological or obsolete components) is decontracted.
DisAc updates d(w′) by d(w) + W (w,w′) for all edges
(w,w′)where fC (w) = fC (w′), by decontracting superedge
(fC (w), fC (w′)) at worst, in the same way as Dijkstra.

Example 7 GivenDist query (u2, k5) on the contracted graph
Gc of Fig. 1b,DisAcworks in the following steps: (1) initially,
S = ∅, d(u2) = 0, and d(v) = ∞ for all other nodes; (2)
S = {u2}, d(u1) = d(u5) = 1, d(u3) = d(u4) = 2 by using
SDist(vH4); (3) S = {u2, u1, u5, u3, u4}, d(t1) = 3 by edge
(u4, t1), and d(k6) = d(t1) + dvH3(k6, t1) = 7 by vH5.dis;
d(i1) = 2 by edge (u1, i1), and d(f1) = d(n1) = d(l1) = 3
by vH1.dis; similarly, d(u7) = 3 and d(u10) = 4, d(u6) =
d(u8) = d(u9) = 5bymaking use of reverse function f ′

C and
synopsis SDist(vH3) (note that vH3 contracts a star); (4) S =
{u2, u1, u5, u3, u4, i1, t1, u7}, d(t2) = 4 by edge (t1, t2); and
(5) S = {u2, u1, u5, u3, u4, i1, t1, u7, f1, n1, l1, t2}, d(k1) =
d(k3) = d(k5) = 5 by edges (t2, k1), (t2, k3), (t2, k5). When
DisAc moves node k5 to S, it gets d(k5) = 5. The algorithm
returns d(u2, k5) = 5. 	

Analyses. By induction on the length of shortest paths, one
can verify that DisAc is correct. In particular, for each node
w′ in G, when d(w′) is updated by a node w that is mapped
to the same supernode, the update is equivalent to a series
of Dijkstra updates. Moreover, DisAc works on smaller con-
tracted graphs Gc and saves traversal cost inside contracted
components without any decontraction, neither topological
nor obsolete.
Temporal shortest distance. Similar to temporal SubIso and
TriC, we study temporal Distqueries (u, v, t), where (u, v)

is a pair of nodes as in Dist, and t is a timestamp. It is to
compute the shortest length of paths p from u to v such that
for each node w on p, T (w) > t .

Algorithm DisAc can be easily adapted to temporal Dist,
by skipping nodes v with T (v) ≤ t . In particular, it safely
ignores a supernode vH if vH .t ≤ t .

3.4 Connected component with contraction

We next study the connected component problem [29,85]. In
a graph G, a connected component is a maximal subgraph of
G in which any two nodes are connected to each other via a
path. The connected component problem, denoted as CC, is
to compute the set of pairs (s, n) for a given graph G, where

123

W. Fan et al.

(s, n) indicates that there are n connected components in G
that consist of s nodes.

Given a graph G, CC returns the numbers of connected
components of various sizes in G. Similar to Dist, CC is a
non-local query, i.e., it has to traverse the entire graph when
answering the query. It is also un-labeled, i.e., labels have no
impact on its query answer.

This form of CC is used in pattern recognition [45,53],
graph partition [86] and random walk [49].

We adapt algorithm CCA of [85] for CC to contracted
graphs, since it is one of the most efficient CC algorithms.
Better still, we show that the adapted algorithm decontracts
neither supernodes nor superedges.

3.4.1 Contraction for CC

The synopsis SSubIso for SubIso suffices for us to answer
CC queries. Observe that each subgraph H contracted to a
supernode vH is connected, no matter whether H is a topo-
logical component or an obsolete component. We can regard
a supernode vH as a whole when evaluating CC queries, and
leverage SSubIso(vH) and f ′

C to compute the size of connected
components. We need neither additional synopses nor any
decontraction.

3.4.2 Connected component

We now adapt algorithm CCA [85] to contracted graphs. The
adapted algorithm is referred to as CCAc.
Algorithm CCA. We first review how CCA works. (1) Start-
ing from each unvisited node v in graph G, CCA performs
a depth-first-search (DFS) and collects all unvisited nodes
reached in the traversal. These nodes are connected to v and
are marked as visited. When no more nodes are unvisited,
all visited nodes and v form a connected component. CCA
records its size s. (2) After all nodes in G are visited, CCA
groups connected components by size s and returns the aggre-
gate (s, n).
Algorithm CCAc. On the contracted graph Gc, CCAc works
in the same way as CCA except that (1) it only performs DFS
on Gc, without decontracting any supernodes or superedges;
and (2) the size of each connected component is aggregated
as the sum of the size | f ′

C (vH)| of all supernodes vH in the
component.

Example 8 On the contracted graph in Fig. 1b, CCAc finds a
connected component that consists of supernodes vH1, vH2,

vH3, vH4, vH5 and t2. The size s of this component is simply
the sum | f ′

C (vH1)| + · · · + | f ′
C (vH5)| + | f ′

C (t2)|, i.e., s =
25. Since all the supernodes in Gc have been visited, CCAc

outputs (25, 1). 	

Analyses. CCAc is correct since it follows the same logic
as CCA and all contracted subgraphs are guaranteed to be

connected. The algorithm takes at most O(|Gc|) time while
CCA takes O(|G|) time. Since Gc is much smaller than G,
CCAc always outperforms CCA.
Temporal connected component. CCAc can be adapted to
compute connected components with timestamp later than a
given time t , by skipping nodes v with T (v) ≤ t . It safely
ignores a supernode vH if vH .t ≤ t .

3.5 Clique decision with contraction

We next study a decision problem for clique. A clique in a
graph G is a subgraph C in which there are edges between
any two nodes; it is a k-clique if the number of nodes in
C is k (i.e., |V (C)| = k) . We consider the clique decision
problem [20,57], denoted by CD, to find whether there exists
a k-clique inG for a given number k. CD is beingwidely used
in community search [76], team formation [59] and anomaly
detection [11,65].

Similar to Dist and CC, CD is un-labeled. In contrast with
Dist and CC, but similar to SubIso, it is local, i.e., all nodes
in a clique are within 1 hop of each other.

The clique decision problem is known NP-complete (cf.
[42]). A variety of algorithms have been developed for CD,
notable CDA of [57], which we will adapt next.

3.5.1 Contraction for CD

Observe the following. (1) Cliques in G contracted into
supernodes in Gc can help us find an initial maximum clique
(see below). (2) The degree of a node can be used as an upper
bound of the maximum clique containing it.

In light of these, we extend synopsis SSubIso(vH)with tags
cs andmd. For a subgraph H that is contracted to a supernode
vH , the two tags record the maximum clique found in H
and the maximum degree of the nodes in H , respectively.
Specifically, vH .cs is based on vH .type:

◦ clique: vH .cs = | f ′
C (vH)|;

◦ diamond and butterfly: vH .cs = 3;
◦ star, path and claw: vH .cs = 2; and
◦ obsolete component: we find a k-clique in an obsolete
component online.

and vH .md is by aggregation:

◦ node v: v.md = |{u | (u, v) ∈ E}|; and
◦ supernode vH : vH .md = max{v.md | fC (v) = vH }.

Synopses SCD also share the properties of SSubIso.

Example 9 In the contracted graph Gc of Fig. 1b, SCD(vH)

extends SSubIso(vH) with tags cs and md as follows. Since
vH2 contracts a clique, vH2.cs = 5; vH4.cs = 3 since vH4

123

Making graphs compact by lossless contraction

contracts a butterfly, and vH .cs = 2 for supernodes vH3 (star)
and vH5 (path). For tagmd, vH1.md = i1.md = 4; similarly,
vH2.md = 8, vH3.md = 4, vH4.md = 4, vH5.md = 4, and
t2.md = 4. 	

3.5.2 Clique decision

We adapt CDA [57] to Gc, denoted as CDAc.
Algorithm CDA. We first review CDA. Given a graph G,
algorithm CDA checks the existence of a k-clique in G by
branch-and-bound. It branches from each node in G. Denote
by C the current clique in the search, and by P the set of
common neighbors of the nodes in C . CDA (1) bounds the
search from C if |C | + |P| < k, or (2) branches from each
node u in P to expandC . More specifically, it iteratively adds
a node u from P to C and removes all those nodes in P that
are not neighbors of u, enlarging C and shrinking P until P
is empty. If |C | ≥ k, then C contains a k-clique and CDA
terminates with true; it returns false if no k-clique is found
after all branches are searched.
AlgorithmCDAc.CDAc adopts the same logic asCDA except
the following: (1) it picks the maximum synopsis vH .cs
among all supernodes vH in Gc; a k-clique is found directly
if vH .cs ≥ k; and (2) it skips a supernode vH in Gc if
vH .md < k − 1. Superedges adjacent to vH are skipped
as well since no k-clique contains any node contracted to
vH . Otherwise, it checks the synopsis of vH if vH contracts
a topological component, or restores obsolete component H
contracted to vH , to check cliques in the original graph G.
Note that CDAc initiates the search with the largest clique
contracted, by checking the synopses. Hence, cliques play a
more important role than the other regular structures for CD.

Example 10 For query with k = 5, by SCD(vH2) of Fig. 1b,
CDAc finds a 5-clique and returns true.

For query with k = 6, all supernodes except vH2 are
skipped by synopses. Their adjacent superedges are skipped
as well. Since vH2 only contracts a 5-clique, CDAc fails to
find a 6-clique and returns false. 	

Analyses. One can verify that CDAc is correct since it follows
the same logic as CDA except that it adopts pruning strategies
that are possible because of the use of synopses. While the
two algorithms have the same worst-case complexity, CDAc

starts with a supernode with a maximum clique and may
find a k-clique directly; moreover, it skips a supernode as a
whole by synopses, which reduces unnecessary search and
validation.
Temporal k-clique. AlgorithmCDAc can be adapted to find a
k-cliquewith timestamp later than a given time t , by skipping
nodes v with T (v) ≤ t . Like SubAc and TriAc, it safely
ignores a supernode vH if vH .t ≤ t .

4 Incremental contraction

We next develop an incremental algorithm to maintain con-
tracted graphs in response to updates �G to graphs G.
We start with batch update �G, which is a sequence of
edge insertions and deletions. We formulate the problem
(Sect. 4.1), present the incremental algorithm (Sects. 4.2–
4.3), discuss vertex updates (Sect. 4.4), and parallelize the
algorithm (Sect. 4.5).

4.1 Incremental contraction problem

Updates to a graph G, denoted by �G, consists of (1) node
updates, i.e., node insertions and deletions; and (2) edge
updates, i.e., edge insertions and deletions.

Given a contraction scheme 〈 fC ,S, fD〉, a contracted
graph Gc = fC (G), and updates �G, the incremental con-
traction problem, denoted as ICP, is to compute (a) changes
�Gc to Gc such that Gc ⊕�Gc = fC (G ⊕�G), i.e., to get
the contracted graph of the updated graph G ⊕ �G, where
Gc ⊕ �Gc applies �Gc to Gc; (b) the updated synopses
of affected supernodes; and (c) functions fC ⊕ � fC and
fD ⊕ � fD w.r.t. the new contracted graph Gc ⊕ �Gc.
ICP studies the maintenance of contracted graphs in

response to update�G that may both change the topological
structures of contracted graph Gc, and refresh timestamps of
nodes. As a consequence, obsolete nodes may be promoted
to be non-obsolete ones if they are touched by �G, among
other things.
Criterion. Following [77], we measure the complexity of
incremental algorithms with the size of the affected area,
denoted by AFF. Here AFF includes (a) changes �G to the
input, (b) changes �Gc to the output, and (c) edges with at
least an endpoint in (a) or (b).

An incremental algorithm is said to be bounded [77] if its
complexity is determined by |AFF|, not by the size |G| of the
entire (possibly big) graph G.

Intuitively, �G is typically small in practice. When �G
is small, so is �Gc. Hence, when �G is small, a bounded
incremental algorithm is often far more efficient than a batch
algorithm that recomputes Gc starting from scratch, since
the cost of the latter depends on the size of G, as opposed to
|AFF| of the former.

An incremental problem is said to be bounded if there
exists a bounded incremental algorithm for it, and it is
unbounded otherwise.
Challenges. Problem ICP is nontrivial. (1) Topological com-
ponents are fragile. For instance, when inserting an edge
between two leaves of a star H , H is no longer a star, and
its nodes may need to be merged into other topological com-
ponents. (2) Refreshing timestamps by a query Q may make
some obsolete nodes “fresh” and force us to reorganize obso-
lete and topological components. (3) When contracted graph

123

W. Fan et al.

Gc is changed, so are their associated synopses and decon-
traction function.
Main result.Despite challenges,we show that bounded incre-
mental contraction is within reach in practice.

Theorem 2 Problem ICP is bounded for SubIso, TriC, Dist,
CC and CD, and takes at most O(|AFF|2) time.

We first give a constructive proof of Theorem 2 for edge
updates, consisting of two parts: (1) the maintenance of the
contracted graph Gc and its associated decontraction func-
tion fD (Sect. 4.2); and (2) the maintenance of the synopses
of affected supernodes (Sect. 4.3). We then give a construc-
tive proof of Theorem 2 for vertex updates (Sect. 4.4), which
is simpler.

4.2 Incremental contraction algorithm

An incremental algorithm is shown in Fig. 7, denoted by
IncCR. It has three steps: preprocessing to initialize affected
areas, updating to maintain contracted graph Gc, and con-
tracting to process refreshed singleton nodes. To simplify
the discussion, we focus on how to update Gc in response
to �G, where �G consists of edge insertions and deletions;
the handling of fD is similar.
(a) Preprocessing. Algorithm IncCR first identifies an ini-
tial area affected by edge update �G (lines 1-2). It removes
“unaffecting” updates from �G that have no impact on Gc

(line 1), i.e., edges in �G that are between two supernodes
when none of their nodes is an intermediate node of a path.
These updates are made to corresponding subgraphs of G
that are maintained by fD . It then refreshes timestamps of
nodes u touched by edges e = (u, v) in�G (line 2). Suppose
that node u is mapped by fC to supernode vH with vH .type
= obsolete. Then, vH is decomposed into singleton nodes, u
is non-obsolete and is mapped to itself by fC . Such singleton
nodes are collected in a set Vs , as the initial area affected by
�G. Node v is treated similarly.

Note that an unaffecting updatewould not become “affect-
ing update” later on. All changes in �G are applied to graph
G in the given order.
(b) Updating. Algorithm IncCR then updates contracted
graph Gc (lines 3-8). For each update e = (u, v), IncCR
invokes procedure IncCR+ (resp. IncCR−) to updateGc when
e is to be inserted (resp. deleted) (lines 4-7). Updating Gc

may make some updates in �G unaffecting, which are fur-
ther removed from �G (line 8). Moreover, some nodes may
become“singleton”when a topological component is decom-
posed by the updates, e.g., leaves of a star. It collects such
nodes in the set Vs .

More specifically, to insert an edge e = (u, v), IncCR+
updatesGc and adds new singleton nodes to Vs . Suppose that
u (resp. v) is mapped by fC to supernode vH1 (resp. vH2)
(line 1). IncCR+ decomposes vH1 and vH2 into the regular

structures of topological components (line 2). For instance,
if vH1 = vH2, and vH1.type =star, u and v make a triangle
with the central node; thus, IncCR+ decomposes the star into
singleton nodes. When vH1.type = clique and vH2.type =
path, supernode vH2 is divided into two shorter paths. Note
that components with less than kl nodes due to updates are
decomposed into singleton nodes. All such singleton nodes
are added to the set Vs (line 3).
(c) Contracting. Finally, algorithm IncCR processes nodes
in the set Vs (line 10). It (a) merges nodes into neighboring
supernodes; or (b) builds new components with these nodes,
if possible; otherwise (c) it leaves node v as a singleton, i.e.,
by letting fC (v) = v.

Example 11 Consider inserting four edges into graph G of
Fig. 1a: (1) (n1, f1): nodes n1 and f1 are mapped to obso-
lete component vH1, and vH1 is decomposed into singleton
nodes, one for each of n1, f1, i1 and l1; then, (n1, f1)
is removed from �G; (2) (k1, u4): it is unaffecting since
fC (k1) = fC (u4) and neither k1 nor u4 is an intermediate
node of a path; (3) (k1, u10): it is also unaffecting; and (4)
(u1, u4): vH4 is not a butterfly any longer, and is decomposed
into singletons.

Edge deletions are handled similarly. 	

Analyses. Algorithm IncCR takes O(|AFF|2) time: (a) the
preprocessing step is in O(|�G|) time; (b) the updating step
takes O(|AFF|) time, in which updating fD is the dominat-
ing part; and (3) the cost of contracting Vs into topological
components is in O(|AFF|2) time.

The algorithm is (a) bounded [77], since its cost is deter-
mined by |AFF| alone, and (b) local [35], i.e., the changes are
confined only to affected supernodes and their neighbors in
the contracted graph Gc.

4.3 Maintenance of synopses

We next show that for SubIso, TriC, Dist, CC and CD, (a)
the number of supernodes whose synopses are affected is at
most O(|AFF|), and (2) the synopsis for each supernode can
be updated in O(|AFF|) time. Hence, incremental synopses
maintenance for each of SubIso, TriC, Dist, CC and CD takes
at most O(|AFF|2) time.

To see these, consider a supernode vH in Gc.
(a) For SubIso, recall that SSubIso(vH) stores the type and

key features of vH (Sect. 3.1). One can see that the num-
ber of supernodes whose synopses are affected is at most
|�Gc|, and SSubIso(vH) for each such vH can be updated in
O(1) time. Thus, the maintenance of SSubIso is bounded in
O(|AFF|) time due to bounds [kl , ku].

(b) For TriC, synopsis STriC(vH) extends SSubIso(vH) with
vH .tc,which is updated by (i) clique neighbors I of nodesu in
vH when I ∈ AFF; (ii) vH itself if vH .type is clique or obso-
lete; and (iii) common neighbors J of connected nodes u, v

123

Making graphs compact by lossless contraction

Fig. 7 Algorithm IncCR

in vH for J ∈ AFF. Thus, supernodes affected are enclosed in
AFF, which covers�G,�Gc and their neighbors. Moreover,
STriC(vH) for each affected vH can be updated in |AFF| time.
Thus, themaintenance of STriC is bounded in O(|AFF|2) time.

(c) For Dist, SDist(vH) extends SSubIso(vH) with vH .dis,
which is confined to vH and can be updated in O(1) time
since | f ′

C (vH)| ≤ ku . Thus, the incremental maintenance of
SDist is bounded in O(|AFF|) time.

(d) For CC, recall that the synopsis SSubIso suffices to
answer CC queries. Hence, as in case (a), SCC(vH) for each
supernode vH can be updated in O(1) time, and the mainte-
nance of SCC is bounded in O(|AFF|) time.

(e) For CD, SCD(vH) extends SSubIso(vH) with vH .cs and
vH .md. Here vH .cs is confined to vH and can be updated in
O(1) time; vH .md is confined to vH and its neighbors, and
can be updated in O(|AFF|) time. Thus, the maintenance of
SCD is in O(|AFF|2) time.

Example 12 Continuing with Example 11, we show how
to maintain vH .tc in STriC(vH) for supernodes vH in Gc;
SSubIso(vH), SDist(vH), SCC(vH) and SCD(vH) are simpler
since their affected synopses are confined to �Gc.

More specifically, (1) for edge insertion (n1, f1), supern-
ode vH1 is decomposed into four singletons, for which
synopses are defined as n1.tc = f1.tc = l1.tc = i1.tc = 0.
(2) For (unaffecting) edge insertion (k1, u4), vH .tc remains
the same for all vH ∈ Gc. (3) For (unaffecting) edge insertion
(k1, u10), k1 becomes a common neighbor of u10 and u6; let
H denote the subgraph contracted by vH2; then, t Hu10,u6 = 1
and vH3.tc = 1. (4) When inserting edge (u1, u4), vH4 is
decomposed into singletons. During the contraction phase,
nodes u1, u2, u5, u4 are contracted into a diamond v′

H4 with
v′
H4.tc = 2. Node u3 is left singleton, with u3.tc = 0. 	

Fig. 8 Algorithm IncCRV

4.4 Vertex updates

Vertex updates are a dual of edge updates [58], and can be
processed accordingly. More specifically, we present incre-
mental algorithm IncCRV in Fig. 8, to deal with vertex
updates. Consider node insertions and deletions.

(1) When inserting a new node u, algorithm IncCRV first
treats u as a singleton and collects it in set Vs (lines 3-4); the
node u is then contracted into a topological structure in the
contracting step (line 7).

(2) When deleting a node u that is contracted into a
supernode vH , there are three cases to consider, elaborated in
IncCR−

V of Fig. 8: (a) if vH is a clique, vH remains unchanged
except that u is removed (lines 2-3); (b) if vH is a claw, a but-
terfly or an obsolete component, vH is decontracted and all
nodes in f ′

C (vH) except u are treated as singletons and are
collected in set Vs (lines 4-5); and (c) otherwise, we process u
and vH by synopsis and add resulting singleton nodes into Vs
(lines 6-7). For instance, consider the casewhen vH contracts
a star, (i) if u is the central node vH .c, vH is decontracted in
the same way as case (b); and (ii) otherwise, vH remains to
be a star, similar to case (a).

Similar to edge updates, contracting singleton nodes of Vs
into topological components dominates the cost of the pro-
cess. One can verify that it can be done in at most O(|AFF|2)
time. Similarly, synopsis maintenance also takes O(|AFF|2)
time. Hence, incremental contraction remains bounded in the
presence of vertex updates.

123

W. Fan et al.

Fig. 9 Algorithm IncPC

4.5 Parallel incremental contraction algorithm

We parallelize incremental algorithm IncCR, to speed up the
incremental maintenance process.
Parallel setting. Similar to PCon, we use a master M0 and
n workers, A contracted graph Gc is edge-partitioned and
is distributed to n workers. Each fragment Fi consists of a
part of the contracted graph Gc and its corresponding (par-
tial) decontraction function and synopses. For a crossing
superedge (vH1, vH2) between two fragments, i.e.,when vH1

andvH2 are assigned to twodistinct fragments, the decontrac-
tion function fD(vH1, vH2) is maintained in both fragments.
Parallel incremental contraction. The parallel incremental
algorithm is denoted by IncPC and shown in Fig. 9. To sim-
plify the discussion, we focus on edge updates; node updates
are processed similarly. It works under BSP [88]. In a nut-
shell, it preprocesses crossing (super)edges (line 1). Then,
all the workers run IncCR on its local fragment in paral-
lel (line 2). After that, IncPC contracts refreshed singleton
nodes Vs into supernodes (lines 3-8) along the same lines
as algorithm PCon. Here, each fragment has its local set Vs
and all refreshed singleton nodes in Vs can be coordinated
and distributed by the master M0. Each node v is guaranteed
to be contracted into one supernode vH . More specifically,
algorithm IncPC works as follows.

(1) IncPC preprocess updated edges e = (u, v) between
two fragments (line 1), i.e., when u and v are contracted
into supernodes vH1 and vH2, and vH1 and vH2 are in two
distinct fragments. Such updates are unaffecting as long as
neither u nor v is an intermediate node of a path, and these
updates are maintained by fD . Otherwise, the supernode of
type path may be affected and is decomposed into singleton
nodes; such refreshed singleton nodes are collected in a set
Vs as the initial area affected by �G. In the same way as
IncCR, we refresh timestamps of obsolete nodes touched by
updates.

(2) Each worker locally runs IncCR in parallel (line 2).
Refreshed singleton nodes that cannot be contracted into
supernodes are collected in Vs (line 3).

(3) For each refreshed singleton node v in Vs , IncPC build
its uncontracted neighbors (of at most ku nodes) in parallel,
similar to step (2) in PCon (lines 4-5).

(4) Master M0 merges overlapped neighbors into one and
distributes disjoint ones to n workers (lines 6-7).

(5) Each worker contracts its assigned subgraphs, i.e.,
uncontracted neighbors, in parallel (line 8).

One can verify that each node v inG is contracted into one
supernode vH (including v itself), and the contracted graph
Gc cannot be further contracted.

5 Experimental study

Using ten real-life graphs, we experimentally evaluated (1)
the contraction ratio; (2) the speedup of the contraction
scheme; (3) the impact of contracting each topological com-
ponent and obsolete component; (4) the space cost of the
contraction scheme compared to existing indexing methods;
(5) the efficiency of the (incremental) contraction algorithms;
and (6) the parallel scalability of the (incremental) contrac-
tion algorithms.
Experiment setting. We used the following datasets.
(1) Graphs. We used ten real-life graphs: three social net-
works Twitter [70], LiveJournal [94] and LivePokec [10];
threeWeb graphs Google [64],NotreDame [5] and GSH [3];
three collaboration networks DBLP [2], Hollywood [15] and
citHepTh [63]; and a road network Traffic [1]. Their sizes are
shown in Table 2. We randomly generated a time series to
simulate obsolete attributes, atmost 70%(it is 80%for ITdata
of our industry collaborator).We tested obsolete components
with random (temporal) queries generated on all datasets.

We also generated synthetic graphs with up to 250 M
nodes and 2.5 B edges, to test the parallel scalability of the
(incremental) contraction algorithms.
Updates. We randomly generated edge updates �G, con-
trolled by the size |�G| and a ratio ρ of edge insertions to
deletions. We kept ρ = 1 unless stated otherwise, i.e., the
size of G ⊕ �G remains stable. In the same manner, we
generated vertex updates �G.
(2) Graph patterns. We implemented a generator for graph
pattern queries controlled by three parameters: the number
VQ of pattern nodes, the number EQ of pattern edges, and a
set LQ of labels for queries Q.
(3) Implementation. We implemented the following algo-
rithms, all in C++. (1) Algorithms SubAc (Sect. 3.1.2), TriAc

(Sect. 3.2.2), DisAc (Sect. 3.3.2), CCAc (Sect. 3.4.2), CDAc

(Sect. 3.5.2), VF2c for SubIso by adapting VF2 [28] to con-
tracted graphs; in addition, PLLc for Dist by adapting PLL [4]
to contracted graphs. (2) Our contraction algorithm GCon
(Sect. 2.3) and its parallel versionPCon (Sect. 2.4), incremen-
tal algorithm IncCR for batch updates and its parallel version
IncPC (Sect. 4). (3) The baselines include existing query eval-

123

Making graphs compact by lossless contraction

Table 2 Contraction ratio (each column: CR or % of contribution to CR with/without obsolete mark)

Graph |V |, |E | ku CR 1st 2nd 3rd Obsolete

Twitter 81K, 1.3M 100 0.176/0.286 7.78/27.7 15.44/50.71 4.29/14.39 69.69/–

LiveJournal 4M, 35M 500 0.378/0.527 11.46/30.3 20.41/51.4 3.74/9.7 60.99/–

LivePokec 1.6M, 22M 500 0.467/0.651 4.46/9.91 35.91/77.76 2.32/4.83 54.4/–

Google 876K, 4.3M 200 0.193/0.294 19.36/51.47 19.33/47.04 0.58/1.49 60.74/–

NotreDame 325K,1.1M 200 0.274/0.441 23.16/60.64 9.47/26.95 4.56/12.4 62.81/–

GSH 68M, 1.8B 500 0.325/0.493 29.32/77.33 5.31/21.78 0.75/0.89 64.62/–

DBLP 204K, 382K 100 0.14/0.172 36.21/71.65 14.22/28.32 0.02/0.03 49.54/–

Hollywood 1.1M, 56M 500 0.239/0.534 17.36/71.76 6.05/16.46 3.21/11.79 73.38/–

citHepTh 28K, 352K 50 0.26/0.362 21.42/51.93 14.18/36.71 4.6/11.36 59.81/–

Traffic 24M, 29M 500 0.365/0.59 12.37/49.72 9.42/36.74 3.5/13.54 74.7/–

uation algorithms: (a) TurboIso [44] and TurboIsoBoosted
[78] with indexing for SubIso, and VF2 [28] without index-
ing; (b) graph compression DeDense [69] for SubIso; (c)
TriA [47] for TriC; (d) Dijkstra without indexing and PLL [4]
with indexing forDist [31]; (e) CCA [85] for CC; and (f) CDA
[57] for CD. We did not compare with summarization since
it does not support any algorithm to compute exact answers
for the five applications.
(4) Experimental environment. The experiments were con-
ducted on a single-processor machine powered by Xeon 3.0
GHz with 64GB memory, running Linux. Since GSH and
synthetic graphs ran out of 32 GB memory without contrac-
tion, we used a machine with 64 GB memory. For parallel
(incremental) contraction, we used 4 machines, each with 12
cores powered by Xeon 3.0 GHz, 32GB RAM, and 10Gbps
NIC. Each experiment was run 5 times, and the average is
reported here.
Experimental results. We now report our findings.
Exp-1: Effectiveness: Contraction ratio. We first tested the
contraction ratioof our contraction scheme, defined asCR =
|Gc|/|G|. Note that for each query class Q, CR is the same
for all queries in Q. Moreover, all applications on G share
the same contracted graph Gc while incorporating different
synopses. In addition, we report the impact of each of the
first three topological components and obsolete component
for each dataset, in the presence and absence of obsolete data.

As remarked in Sect. 2, we limit the nodes of contracted
subgraphs within [kl , ku]. We fixed kl = 4 and varied ku
based on the size of each graph. We considered two settings:
(a) when obsolete data are taken into account, with threshold
t0 = 50%tm , where tm denotes the maximum timestamp in
each dataset; and (b) when we do not separate obsolete data,
i.e.,when t0 = 0. The results are reported in Table 2 for all the
real-life graphs (in which each column indicates either CR
or percentage of contribution to CR with/without obsolete
mark). We can see the following.

(1) When t0 = 50%tm , CR is on average 0.281, i.e., con-
traction reduces these graphs by 71.9%. When t0 = 0, i.e., if
obsolete data are not considered, CR is 0.435. These show
that real-life graphs can be effectively contracted in the pres-
ence and absence of obsolete data. Compared with the results
of [38], by considering more regular structures, the contrac-
tion scheme improves the contraction ratioCR by 2.49% and
6.90% in the presence and absence of obsolete data, respec-
tively.

(2) When obsolete data are present, the average CR
is 0.34, 0.264, 0.213 and 0.365 in social networks, Web
graphs, collaboration networks and road networks, respec-
tively. When obsolete data are absent, CR is on average
0.488, 0.409, 0.356 and 0.59. The contraction scheme per-
forms the best on collaboration networks in both settings,
since such graphs exhibit evident inhomogeneities and com-
munity structures.

(3) When obsolete data are absent, on average the first
three regular structures contribute 50.2%, 39.4% and 8.0% to
CR, respectively. When obsolete mark is taken into account,
their contribution is 18.3%, 14.9% and 2.8%, respectively.
This is because nodes from these components may be moved
to obsolete components.

(4) We also studied the impact of the contraction order
on query evaluation. Topological components have different
impacts on different types of graphs, e.g., stars, claws and
paths are effective in Traffic, and cliques, stars and butter-
flies work better than the others in collaboration networks.
Taking the order of Table 1 as the baseline, we tested the
impact of (a) RE, by reversing the order, and (b) EX, by
exchanging between different types of graphs, e.g., we use
the order for road networks to contract social graphs. On
average the CR of RE and EX is decreased by 9.42% and
7.05%, respectively. As shown in Table 3, the average slow-
down of RE and EX is (a) 7.24% and 5.58% for SubIso, (b)
5.55% and 5.46% for TriC, (c) 3.89% and 4.30% forDist, (d)
7.34% and 34.7% for CC, and (e) 2.38% and 19.1% for CD,

123

W. Fan et al.

Table 3 Slowdown (%) by RE
and EX orders

Graph SubIso TriC Dist CC CD

RE EX RE EX RE EX RE EX RE EX

Twitter 8.04 3.98 7.41 3.66 5.27 2.86 8.22 19.2 6.73 24.9

LiveJournal 9.46 5.52 8.26 5.09 2.71 5.32 9.03 61.1 5.49 18.3

LivePokec 8.67 6.46 3.15 3.12 4.49 2.48 6.10 51.7 8.23 20.2

Google 5.17 7.54 6.07 3.75 1.02 3.8 7.19 38.7 −4.17 12.5

NotreDame 11.9 5.76 4.20 6.46 5.95 4.93 3.72 44.5 −4.33 15.3

GSH 3.52 6.22 4.59 6.08 2.78 4.15 4.25 32.1 −5.53 16.4

DBLP 2.13 5.53 11.3 14.2 4.38 5.31 18.8 19.6 5.05 34.2

Hollywood 6.32 6.39 2.25 4.73 3.89 5.81 5.75 30.3 3.02 29.3

citHepTh 7.48 3.24 3.98 4.91 2.56 3.23 7.43 35.5 7.92 17.1

Traffic 9.69 5.11 4.29 2.56 5.78 5.11 2.94 14.2 1.39 2.87

respectively. These justify that the order of Table 1 is effec-
tive for most applications and most types of graphs. There
are also exceptions, e.g., reversing the order for Web graphs
improves the efficiency of CD. Recall that we contract stars,
cliques and butterflies for Web graphs. For CD in particular,
however, cliques play a more important role than the other
two (Sect. 3.5); hence, contracting cliques first may work
better for CD.

Exp-2: Effectiveness: query processing. We next eval-
uated the speedup of query processing introduced by the
contraction scheme, measured by query evaluation time over
original and contracted graphs.
Subgraph isomorphism. Varying the size |VQ | of pattern
queries from4 to7,we testedVF2,TurboIso andTurboIsoBoosted
on GSH and Hollywood as G, DeDense [69] on the com-
pressed graph, and SubAc and VF2c on the contracted graph
Gc of G. For each query, we output the first 108 matches. As
shown in Fig. 10a, b, (1) on average, SubAc on Gc is1.69,
1.49 and 18.85 times faster than TurboIso, TurboIsoBoosted
and DeDense, respectively; (2) VF2c beats DeDense by 9.31
times; (3) VF2cwithout indices is only 19.1% slower than
TurboIsowith indices,while TurboIsoBoosted and TurboIso
are 10.1 and 8.97 times faster than VF2, respectively; and (4)
the speedup is more substantial on collaboration networks,
e.g., 2.11 times on Hollywood, because cliques are prevalent
in such graphs and are the most effective structure for SubIso
due to the high capacity in pruning invalid matches.
Triangle counting. As shown in Fig. 10c, the results for TriC
are consistent with the results on subgraph isomorphism: (1)
TriAc on the contracted Gc is on average 1.44 times faster
than TriA on their original graphsG. (2) The speedup is more
evident in collaboration networks: e.g., TriAc on Hollywood
is 1.57 times faster than TriA while it is 1.47, 1.45 and 1.28
times on LiveJournal, Google and Traffic, respectively. TriA
spends more than 1000 seconds on GSH (hence not shown).
Shortest distance. The results for Dist are consistent with
the results on SubIso. As reported in Fig. 10d, DisAc is 1.64

and 1.36 times faster than Dijkstra on GSH and Hollywood,
respectively, by reducing search space and employing syn-
opses. PLL could not build indices on GSH within 64G
memory, while PLLc successfully builds indices on (smaller)
contracted GSH. On average, PLLc spends 94.2μs to evaluate
a query on GSH. On other smaller datasets, in contrast, PLLc
is 18% slower than PLL due to overhead on supernodes.
Connected component. As shown in Fig. 10e over
LiveJournal, GSH, Hollywood, and Traffic for social graphs,
Web graphs, collaboration networks and road networks,
respectively, the results for CC are consistent with the results
on SubIso and TriC: (1) algorithm CCAc on contracted graph
Gc is on average 2.24 times faster than CCA on the origi-
nal graph G, since CCAc operates on the smaller Gc without
decontracting supernodes or superedges. (2) The speedup
is more evident in collaborations networks: e.g., CCAc on
Hollywood is 2.87 times faster than CCA, since the contrac-
tion scheme performs the best on such graphs and the time
complexity of CCAc is linear in the size of the contracted
graph.
Clique decision. As also shown in Fig. 10f, (1) algorithm
CDAc is 1.32, 1.54, 1.52 and 1.08 times faster than CDA on
LiveJournal, Hollywood, GSH and Traffic, respectively, by
using synopses to start with an initial maximum clique that
may find a k-clique directly. (2) The speedup is less evident
in road networks. For road networks, the contraction scheme
contracts stars, claws and paths into supernodes; hence, we
can only find a 2-clique (an edge) as the initial maximum
clique by using synopses, which is trivial and useless.

The results on the other graphs are consistent.
Temporal queries. Fixing pattern size |Q| = 4 and vary-
ing timestamp t in temporal queries from 30%tm to 70%tm ,
we tested SubIsot , TriCt , Distt , CCt and CDt . As shown in
Fig. 10g–k on LiveJournal, (1) SubAc is on average 1.81
and 1.77 times faster than TurboIsoBoosted and TurboIso,
respectively; VF2c outperforms VF2 by 7.83 times. (2) The
average speedup for TriC, Dist, CC and CD is 1.58, 2.31, 1.66

123

Making graphs compact by lossless contraction

(b) (c)

(g)(f)(e)

(a) (d)

(h)

(i) (j) (k) (l)

(p)(o)(n)(m)

(t)(s)(r)(q)

Fig. 10 Performance evaluation

and 1.31 times, respectively. (3) The speedup is larger for
temporal queries than for conventional ones since tempo-
ral information maintained in synopsis provides additional
capacity to skip more supernodes, as expected. (4) It is more
substantial for larger t on SubIsot .

The results verify that our contraction scheme (a) is
generic and speeds up evaluation for all five applications,
and (b) it can be used together with existing algorithms,
with indexing (e.g., TurboIso and PLL) or not (e.g., VF2c
and Dijkstra). (c) It is effective by separating up-to-date data
from obsolete.

We remark that our contraction scheme aims to make
a generic optimization for multiple applications to run on
the same graph at the same time. When a new application
is considered, adding a specific synopsis suffices for our
scheme. In contrast, a separate indexing structure has to be
built for indexing approaches. Better still, it is much easier to
develop synopses than indices. Moreover, existing indexing
structures can be inherited by contracted graphs, to improve
performance from contraction in addition to from indexing.

123

W. Fan et al.

Table 4 Slowdown(%) by disabling certain topological component

Graph SubIso TriC Dist CC CD

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

Twitter 45.8 10.9 4.7 16.4 19.1 2.1 28.2 28.7 5.7 85.1 141.6 22.8 42.7 4.1 0.3

LiveJournal 46.3 16.7 3.0 17.5 3.9 1.4 44.3 13.2 7.1 68.4 95.5 14.5 27.5 3.3 0.9

LivePokec 45.5 13.5 2.1 5.5 22.1 0.7 29.5 23.6 4.4 18.0 69.5 11.3 39.0 5.2 1.3

GSH 11.7 32.2 0.4 5.4 18.2 1.1 15.9 33.1 0.7 41.7 10.8 0.4 4.9 52.2 0.2

Google 19.6 40.6 2.5 8.7 20.3 2.9 18.3 44.6 5.8 107.1 70.8 5.6 5.4 57.8 2.7

NotreDame 15.2 42.3 3.3 29.5 41.2 0.4 27.7 47.8 4.9 55.4 50.2 8.0 2.1 20.6 0.5

DBLP 66.6 17.0 0.8 572.1 216.6 1.7 23.2 29.5 0.4 631.7 450.2 0.1 65.1 7.9 0.1

Hollywood 40.3 13.4 5.1 22.6 10.9 1.5 24.0 26.3 5.4 80.1 64.3 5.9 51.7 3.8 0.2

citHepTh 54.5 15.7 2.4 15.4 7.2 0.5 32.3 22.6 7.3 280.7 222.4 25.7 35.5 1.7 0.6

Traffic 30.1 24.3 5.7 10.1 3.5 9.4 40.2 18.7 10.6 41.7 8.7 5.2 4.3 2.5 0.3

Exp-3: Impact of each component. We next evaluated the
impact of contracting each of the topological components
identified in Sect. 2.2.
Impact of topological components. Based on Table 1, we
took contraction of the first three types of regular structures
as the baseline, and tested the impact of each component on
the efficiency of query answering by disabling it, using all
the ten real-life datasets.

As shown in Table 4, the average slowdown in evalua-
tion time by disabling each of the first three structures is
(a) 37.6%, 22.7% and 3.02% for SubIso, (b) 70.3%, 36.3%
and 2.0% for TriC, (c) 28.4%, 28.8% and 5.2% for Dist, (d)
141.0%, 118.4% and 9.9% for CC, and (e) 27.8%, 15.9%
and 0.7% for CD, respectively. In particular, the impact of
each regular structure is mostly consistent with the contrac-
tion order. This said, for specific application and graphs, the
impact of each regular structuremay be slightly different. For
CD onWeb graphs, the average slowdown in evaluation time
by disabling the first structure (star) and the second struc-
ture (clique) is 4.1% and 43.5%, respectively, since cliques
dominate the effectiveness of the synopses for CD.
Impact of obsolete components. We tested the impact of
contracting obsolete components on the efficiency of answer-
ing conventional queries. Fixing |Q| = 4 and varying x for
timestamp threshold such that t0 = x%tm , Fig. 10i–p reports
the results of SubIso, TriC, Dist, CC and CD on LiveJournal,
respectively. We find that (1) the speedup is bigger for larger
t0 when t0 ≤ 70%, i.e.,more nodes are contracted into obso-
lete components; (2) obsolete components speed up SubIso,
TriC, Dist, CC and CD by 1.56, 1.53, 1.39, 2.49 and 1.33
times, respectively; and (3) the speedup for SubIso and CD
gets smaller when t0 ≥ 80% due to the overhead of decon-
tracting obsolete components. The results are consistent for
Dist, TriC and CC, except that their speedup does not go down
when t0 gets larger since they do not need to decontract obso-
lete components.

Impact of kl and ku . We also tested the impact of kl and ku
on the contraction ratio CR and efficiency. As remarked in
Sect. 2.3, diamonds, butterflies and claws have a fixed size,
while cliques, stars and paths vary. Fixing ku = 500 (resp.
kl = 4) andvarying kl (resp. ku) from2 to 6 (resp. 20 to 1000),
Fig. 10q (resp. Fig. 10r) reports the CR on LiveJournal,
Hollywood, GSH and Traffic, respectively. As shown there,
CR decreases when kl decreases or ku increases. Similarly,
Fig. 10s (resp. Fig. 10t) reports the speedup of SubAc, TriAc,
DisAc, CCAc and CDAc on Hollywood. Query evaluation is
slowed down when kl ≤ 3 or ku ≥ 500 for all algorithms
exceptCCAc and TriAc due to excessive superedge decontrac-
tions or overlarge components. Recall that CCAc decontracts
neither supernodes nor superedges, and TriAc precalculates
triangles in both topological components and obsolete parts;
hence, it prefers large ku . We find that the best kl and ku for
the datasets tested are around 4 and 500, respectively.

The results on the other graphs are consistent.
Exp-4: Space cost.We next studied the space cost of our con-
traction scheme compared with indexing cost. We consider
six algorithms: SubAc, TriAc, DisAc, CCAc, CDAc and PLLc.
The space cost includes the sizes of the contracted graph
|Gc|, decontraction function | fD| and the sizes of synopses;
as shown in Sect. 3, SubAc, TriAc, DisAc, CCAc and CDAc

do not need to decontract topological components; thus, we
only uploaded fD for obsolete components and superedges
into memory. In particular, CCAc requires no decontraction
(Theorem 1) and thus incurs no cost for storing fD at all. We
compared the space cost with the indices used by TurboIso,
HINDEX [75], PLL [4] and RMC [68].

Table 5 shows how the space cost increases when more
applications run on Google (i.e., graph G). We find the fol-
lowing. (1) Our contraction scheme takes totally 1.62GB for
SubIso, TriC, Dist, CC and CD, much smaller than 12.9GB
taken by TurboIso, PLL, HINDEX and RMC. (2) With the
contraction scheme, graph G is no longer needed. That is,

123

Making graphs compact by lossless contraction

Table 5 Total space cost of applications run on Google

Application Contraction Indexing

Detail Space Detail Space

Shared parts Gc, fD 837MB G 727MB

+SubIso SSubIso 848MB TurboIso 1.07GB

+TriC STriC 874MB +HINDEX 2.1GB

+Dist SDist 1.51GB +PLL 9.58GB

+CC – 1.51GB – 9.58GB

+CD SCD 1.62GB +RMC 12.9GB

+kNN SkNN 1.75GB +Antipole 19.4GB

compared toG, the scheme uses 0.89GB additional space for
the supernodes/edges in Gc and synopses for all five appli-
cations. It trades affordable space for speedup. (3) Synopses
SSubIso, STriC, SDist, SCC and SCD take 48.3% of the total space
of contraction, i.e., Gc and fD dominate the space cost,which
are shared by all applications. Hence, the more applications
are supported, the more substantial the improvement in the
contraction scheme is over indices.

To inherit the indexing structures of [44] and PLL, we use
1.14GB additional space to build a compact index for PLLc
and on average 26MB for SubAc on Google. in addition to
synopses SDist and SSubIso.

To verify the scalability with applications, we further
adapted existing algorithms for k-nearest neighbors (kNN)
[92]. The total space cost of the scheme for the six applica-
tions is 1.75GB, i.e., 18.1% increment for each. It accounts
for only 9.0% of the indices for TurboIso, PLL,HINDEX, RMC
and Antipole [22] of kNN.
Exp-5: Efficiency of (incremental) contraction. We next
evaluated the efficiency of contraction algorithm GCon and
incremental contraction algorithm IncCR.We also studied the
impact of the order and varied rates of updates on incremental
IncCR.
Efficiency of GCon. We first report the efficiency of GCon.
As shown in Fig. 11a–d on LiveJournal, Hollywood, GSH
and Traffic, respectively, (1) on average GCon takes 109.7s
to contract the graph, without the time of the computation for
synopses. (2) It takes on average 4.13s, 21.2s, 18.1s, 0s and
3.38s only to compute the synopses for SubIso, TriC, Dist,
CC and CD, respectively; i.e., computing synopses of the five
only takes on average 37.3% of the time of GCon. Recall that
the synopses for SubIso suffice for us to answer CC queries;
hence, it is unnecessary to compute synopses for CC.
Efficiency of IncCR. We tested the efficiency of IncCR, by
varying |�G| from5%|G| to 35%|G|. As shown in Fig. 11e–
h on LiveJournal, Hollywood, GSH and Traffic, respectively,
(1) on average IncCR is 2.1 times faster than GCon, up to 6.3
times when |�G| = 5%|G|. It takes on average 26.6% time
to update the synopses for 5% updates on the five applica-

tions. (2) IncCR beatsGCon evenwhen |�G| is up to 30%|G|.
This justifies the need for incremental contraction. (3) IncCR
is sensitive to |�G|; it takes longer for larger |�G|.
Impact of update order. We tested the impact of the orders
of edge insertions and deletions in �G on IncCR. Fixing
|�G| = 10%, we varied the order of updates by (1) ran-
dom (RO), (2) insertion-first (IF) and (3) deletion-first (DF).
On average we find that RO, IF and DF have a performance
difference less than 3.5%onHollywood. That is, IncCR is sta-
ble on batch updates, regardless of the order on the updates.
Similarly, we find that RO, IF and DF have a performance
difference less than 3.7% on Hollywood for vertex updates.
Impact of update rates. We also tested the efficiency of
IncCR against real-time updates, measured by the updates
coming in 1s intervals, i.e., |�G|/s. Varying |�G|/s from
0.2%|G|/s to 1%|G|/s, Fig. 11i shows the following on
LiveJournal. (1) On average it takes 0.88s to update con-
tracted graphs, i.e., IncCR is able to efficiently maintain the
contracted graphs in real life. (2) The update time is less than
1s even when the updates are up to 0.8%|G|. IncCR can han-
dle 0.8%|G|/s of “burst” updates on graph with 40M nodes
and edges.

The results are consistent on the other graphs.
Exp-6: Scalability. Finally, we evaluated (1) the scalability
of our contraction algorithm GCon with graph size |G|, (2)
the parallel scalability of algorithm PCon and IncPCwith the
number of cores.
Scalability on |G|. Varying the size |G| = (|V |, |E |) of syn-
thetic graphs from (50M, 0.5B) to (250M, 2.5B), we tested
the scalability of GCon using a single machine. As shown in
Fig. 11j,GCon scales well withG. It takes 1325s when graph
G has 2.75B nodes and edges.
Scalability of PCon and IncPC. Fixing |�G| = 10%|G|, we
tested the scalability of parallel PCon and IncPC with the
number k of cores. As shown in Fig. 11k and l on GSH, (1)
PCon scales well with k: it is 10.1 times faster when using
k = 20 cores versus k = 1 (single core), and it is 4.3 times
faster when k varies from 4 to 20. (2) IncPC is on average 1.9
times faster than PCon. (3) IncPC scales well with k; it is 3.7
times faster when k varies from 4 to 20, across 4 machines.

The results on other graphs are consistent.
Summary. We find the following over 10 real-life graphs.
On average, (1) the contraction scheme reduces graphs by
71.9%. The contraction ratio is 0.34, 0.264, 0.213 and 0.365
in social networks, Web graphs, collaboration networks and
road networks, respectively. (2) It improves the evaluation of
SubIso, TriC, Dist, CC and CD by 1.69, 1.44, 1.47, 2.24 and
1.37 times, respectively. Existing algorithms can be adapted
to the scheme, with indices or not. (3) On average, contract-
ing the first three types of regular structures improves the
efficiency of query evaluation by 1.61, 1.44 and 1.04 times,
respectively. (4) Contracting obsolete data improves the effi-
ciency of both conventional queries and temporal queries,

123

W. Fan et al.

(b) (c)

(g)(f)(e)

(a) (d)

(h)

(i) (j) (k) (l)

Fig. 11 Efficiency of (incremental) contraction

by 1.64 and 1.78 times on average, respectively. (5) Its total
space cost on SubIso, TriC, Dist, CC and CD is only 12.7%
of indexing costs of TurboIso, PLL, HINDEX and RMC. The
synopses for the five query classes take only 48.3% of the
total space of the contraction scheme. Thus, our contraction
scheme scales with the number of applications. (6) Algo-
rithms GCon, PCon, IncCR and IncPC scale well with graphs
and updates. GCon takes 344s when G has 1.8B edges and
nodes, and PCon takes only 33.1s with 20 cores, across 4
machines. IncCR is 4.9 times faster than GCon when |�G|
is 5%|G|, and is still faster when |�G| is up to 30%|G|. (7)
PCon and IncPC scale well with the number k of machines.
When |�G| = 10%|G|, PCon is 4.3 times faster and IncPC
is 3.7 times faster when k varies from 4 to 20.

6 Related work

This paper extends its conference version [38] as follows.
(1) We identify a variety of frequent regular structures in
different types of graphs, develop their synopses and con-
tract graphs based on their types (Sect. 2.2). In contrast, [38]
adopts an one-size-fit-all solution and contracts only cliques,
paths and stars for all types of graphs. (2) In light of new
regular structures, all examples and algorithms have been

extended (Sects. 2–4). (3) We provide the pseudo code and
details of a parallel contraction algorithm (Sect. 2.4). (4) We
study two new query classes, namely, (non-local) connected
component and (intractable) clique decision, for proof of con-
cept (Sects. 3.4 and 3.5). We also extend the algorithms for
the three other cases to cope with newly studied topolog-
ical components (Sects. 3.1–3.3). (5) We extend the study
of incremental contraction by presenting vertex updates and
parallel incrementalmaintenance algorithm (Sect. 4). (6) The
experimental study is almost entirely new and evaluates the
contraction scheme w.r.t. different regular structures to con-
tract as well as its effectiveness on new big graphs and new
query classes of Sects. 3.4 and 3.5 (Sect. 5).

We discuss the other related work as follows.
Contraction. As a traditional graph programming technique
[43], node contraction merges nodes, and subgraph contrac-
tion replaces connected subgraphswith supernodes. It is used
in e.g., single source shortest paths [54], connectivity [43] and
spanning tree [41].

In contrast, we extend the conventional contraction with
synopses to build a compact representation of graphs as a
generic optimization scheme, which is a departure from the
programming techniques.
Compression.Graph compressionhas been studied for social
network analysis [27], community queries [21], subgraph

123

Making graphs compact by lossless contraction

isomorphism [34,69], graph simulation [37], reachability and
shortest distance [50], and GPU-based graph traversal [82].
It often computes query-specific equivalence relations by
merging equivalent nodes into a single node or replacing
frequent patterns by virtual nodes. Some are query preserv-
ing (lossless), e.g., [37,50,69], and can answer certain types
of queries on compressed graphs without decompression.

Another category of compression aims to minimize the
number of bits required to represent a graph. WebGraph [15]
exploits the inner redundancies of Web graphs; [8] proposes
an encoding scheme based on node indices assigned by the
BFS order; [24] approximates the optimal encoding with
MinHash; and [52] removes the hub nodes for an scheme
to have better locality.

Our contraction scheme differs from graph compression
in the following. (a) It optimizes performance of multiple
applications with the same contracted graph. In contrast,
many compression schemes are query dependent and require
different structures for different query classes. While some
methods serve generic queries [8,15,24], they may incur
heavy recovering cost. (b) Contraction is lossless, while
some compression schemes are lossy, e.g., [34]. (c) For a
number of query classes, their existing algorithms can be
readily adapted to contracted graphs, while compression
often requires to develop new algorithms e.g., [69] demands
a decompose-and-join algorithm for subgraph isomorphism.
Summarization. Graph summarization aims to produce an
abstraction or summary of a large graph by aggregating nodes
or subgraphs (see [67] for a survey), classified as follows.
(1) Node aggregation, e.g., GraSS [60] merges node clusters
into supernodes labeled with the number of edges within and
between the clusters; it is developed for adjacency, degree
and centrality queries. SNAP [87] generates an approximate
summary of a graph structure by aggregating nodes based on
attribute similarity. (2) Edge aggregation, e.g., [73] generates
a summary by aggregating edges, with a bounded number of
edges different from the original graph. (3) Simplification:
instead of aggregating nodes and edges, OntoVis [83] drops
low-degree nodes, duplicate paths and unimportant labels.
Most summarizationmethods are lossy, e.g.,GraSS and SNAP
only retain part of attributes, andOntoVis drops nodes, edges
and labels.

Incremental maintenance of summarization has been
studied [30,46,84]. It depends on update intervals [84]; short-
period summarization is space-costly, while long-interval
summarization may miss updates. To handle these, [46]
aggregates updates into a graph of “frequent” nodes and
edges and computes a summary based on all historical
updates on entire graph.

Both summarization and contraction schemes aim to
provide a generic graph representation to speed up graph
analyses. However, contraction differs from summarization
in the following. (1) The contraction scheme is lossless

and returns exact answers for various classes of queries.
In contrast, summarization is typically lossy and supports
at best certain aggregate or approximate queries only. (2)
Many existing algorithms for query answering can be read-
ily adapted to contracted graphs, while new algorithms often
have to be developed on top of graph summaries. (3) For
a number of query classes studied, contracted graphs can
be incrementally maintained with boundedness and local-
ity, while summarization maintenance requires historical
updates and often operates on the entire graph [46].
Indexing. Indices have been studied for, e.g., subgraph iso-
morphism [13,14,28,44,72], reachability [7,23,50,95] and
shortest distance [25,66]. They are query specific, and take
space and time to store and maintain.

Our contraction scheme differs from indexing as it sup-
ports multiple applications on the same contracted graph,
while a separate indexing structure has to be built for each
query class. Moreover, it is more efficient to maintain con-
tracted graphs than indices. This said, the contraction scheme
can be complemented with indices for further speedup, by
building indices on smaller contracted graphs, as demon-
strated in Sect. 3.1.

7 Conclusion

We have proposed a contraction scheme to make big graphs
small, as a generic optimization scheme for multiple appli-
cations to run on the same graph at the same time. We have
shown that the scheme is generic and lossless. Moreover,
it prioritizes up-to-date data by separating it from obsolete
data. In addition, existing query evaluation algorithms can
be readily adapted to compute exact answers, often with-
out decontracting topological components. Our experimental
results have verified that the contraction scheme is effective.

A topic for future work is to build a hierarchy of con-
tracted graphs by iteratively contracting regular structures
into supernodes, until the one at the top fits into the mem-
ory; the objective is to make large graphs small enough to
fit into the memory of a single machine, and make it possi-
ble to process large graphs under limited resources. Another
topic is to study the capacity of a single multi-core machine
for big graph analytics, by leveraging both contraction and
multi-core parallelism.

Acknowledgements Fan, Li and Liu are supported in part by ERC
652976 andRoyal SocietyWolfsonResearchMeritAwardWRM/R1/18
0014. Liu is also supported in part by EPSRC EP/L01503X/1, EPSRC
CDT in Pervasive Parallelism at the University of Edinburgh. Lu is
supported in part by NSFC 62002236.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the

123

W. Fan et al.

source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Traffic. http://www.dis.uniroma1.it/challenge9/download.html
(2006)

2. DBLP. https://snap.stanford.edu/data/com-DBLP.html (2012)
3. Gsh host. http://law.di.unimi.it/webdata/gsh-2015-host (2015)
4. Akiba, T., Iwata, Y., Yoshida, Y.: Fast exact shortest-path distance

queries on large networks by pruned landmark labeling. In: SIG-
MOD (2013)

5. Albert, R., Jeong, H., Barabási, A.: The diameter of theWorldWide
Web. CoRR cond-mat/9907038 (1999)

6. Angles, R., Arenas, M., Barceló, P., Boncz, P.A., Fletcher, G.H.L.,
Gutierrez, C., Lindaaker, T., Paradies, M., Plantikow, S., Sequeda,
J.F., van Rest, O., Voigt, H.: G-CORE: A core for future graph
query languages. In: SIGMOD, pp. 1421–1432 (2018)

7. Anirban, S., Wang, J., Islam, M.S.: Multi-level graph compression
for fast reachability detection. In: DASFAA (2019)

8. Apostolico, A., Drovandi, G.: Graph compression by bfs. Algo-
rithms 2(3), 1031–1044 (2009)

9. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group
formation in large social networks: membership, growth, and evo-
lution. In: SIGKDD, pp. 44–54 (2006)

10. Bae, S.H.,Halperin,D.,West, J.D., Rosvall,M.,Howe,B.: Scalable
and efficient flow-based community detection for large-scale graph
analysis. TKDD 11(3), 1–30 (2017)

11. Berry, N., Ko, T.,Moy, T., Smrcka, J., Turnley, J.,Wu, B.: Emergent
clique formation in terrorist recruitment. In: AAAI Workshop on
Agent Organizations (2004)

12. Besta,M., Hoefler, T.: Survey and taxonomy of lossless graph com-
pression and space-efficient graph representations. CoRR arXiv:
1806.01799 (2018)

13. Bhattarai, B., Liu, H., Huang, H.H.: CECI: Compact Embed-
ding Cluster Index for Scalable Subgraph Matching. In: SIGMOD
(2019)

14. Bi, F., Chang, L., Lin, X., Qin, L., Zhang, W.: Efficient subgraph
matching by postponing cartesian products. In: SIGMOD (2016)

15. Boldi, P., Vigna, S.: The WebGraph framework I: Compression
techniques. In: WWW, pp. 595–602 (2004)

16. Bonacich, P.: Power and centrality: a family of measures. Am. J.
Sociol. 92(5), 1170–1182 (1987)

17. Bourse, F., Lelarge, M., Vojnovic, M.: Balanced graph edge parti-
tion. In: SIGKDD, pp. 1456–1465 (2014)

18. Brandes, U.: A faster algorithm for betweenness centrality. J.Math.
Sociol. 25(2), 163–177 (2001)

19. Bringmann, B., Nijssen, S.: What is frequent in a single graph?
In: Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pp. 858–863 (2008)

20. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an
undirected graph. CACM 16(9), 575–577 (1973)

21. Buehrer, G., Chellapilla, K.: A scalable pattern mining approach to
web graph compressionwith communities. In:WSDM, pp. 95–106
(2008)

22. Cantone, D., Ferro, A., Pulvirenti, A., Recupero, D.R., Shasha,
D.: Antipole tree indexing to support range search and k-nearest
neighbor search in metric spaces. TKDE 17(4), 535–550 (2005)

23. Cheng, J., Huang, S., Wu, H., Fu, A.W.C.: TF-label: a topological-
folding labeling scheme for reachability querying in a large graph.
In: SIGMOD (2013)

24. Chierichetti, F., Kumar, R., Lattanzi, S., Mitzenmacher, M., Pan-
conesi, A., Raghavan, P.: On compressing social networks. In:
SIGKDD, pp. 219–228 (2009)

25. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and
distance queries via 2-hop labels. SICOMP 32(5) (2003)

26. Cohen, J.: Trusses: Cohesive subgraphs for social network analysis.
Natl. Secur. Agency Tech. Rep. 16(3.1) (2008)

27. Cohen, S.: Data management for social networking. In: SIGMOD
(2016)

28. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub) graph
isomorphism algorithm for matching large graphs. TPAMI 26(10),
1367–1372 (2004)

29. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to algorithms. MIT press (2009)

30. Cortes, C., Pregibon, D., Volinsky, C.: Communities of interest. In:
IDA (2001)

31. Dijkstra, E.W., et al.: A note on two problems in connexion with
graphs. Numer. Math. 1(1) (1959)

32. Dominguez-Sal, D., Martinez-Bazan, N., Muntes-Mulero, V.,
Baleta, P., Larriba-Pey, J.L.: A discussion on the design of graph
database benchmarks. In: TPCTC, pp. 25–40 (2010)

33. Elseidy,M.,Abdelhamid, E., Skiadopoulos, S.,Kalnis, P.:GRAMI:
frequent subgraph and pattern mining in a single large graph.
PVLDB 7(7), 517–528 (2014)

34. Fairey, J., Holder, L.: Stariso: Graph isomorphism through lossy
compression. In: DCC (2016)

35. Fan,W., Hu, C., Tian, C.: Incremental graph computations: Doable
and undoable. In: SIGMOD (2017)

36. Fan, W., Jin, R., Liu, M., Lu, P., Tian, C., Zhou, J.: Capturing
associations in graphs. PVLDB 13(11) (2020)

37. Fan, W., Li, J., Wang, X., Wu, Y.: Query preserving graph com-
pression. In: SIGMOD (2012)

38. Fan,W., Li, Y., Liu,M., Lu, C.:Making graphs compact by lossless
contraction (2021). SIGMOD

39. Fan, W., Wu, Y., Xu, J.: Functional dependencies for graphs. In:
SIGMOD (2016)

40. Francis, N., Green, A., Guagliardo, P., Libkin, L., Lindaaker, T.,
Marsault, V., Plantikow, S., Rydberg, M., Selmer, P., Taylor, A.:
Cypher: An evolving query language for property graphs. In: SIG-
MOD (2018)

41. Gabow, H.N., Galil, Z., Spencer, T.H.: Efficient implementation of
graph algorithms using contraction. In: FOCS (1984)

42. Garey, M., Johnson, D.: Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company,
New York (1979)

43. Gross, J., Yellen, J.: GraphTheory and itsApplications. CRCPress,
Boca Raton (1998)

44. Han,W.S., Lee, J., Lee, J.H.: Turboiso: Towards ultrafast and robust
subgraph isomorphism search in large graph databases. In: SIG-
MOD (2013)

45. He, L., Chao, Y., Suzuki, K., Wu, K.: Fast connected-component
labeling. Pattern Recogn. 42(9) (2009)

46. Hill, S., Agarwal, D.K., Bell, R., Volinsky, C.: Building an effec-
tive representation for dynamic networks. J. Comput. Graph. Stat.
15(3), 584–608 (2006)

47. Hu, X., Tao, Y., Chung, C.W.: Massive graph triangulation. In:
SIGMOD (2013)

48. Itai, A., Rodeh,M.: Finding aminimumcircuit in a graph. SICOMP
7(4), 413–423 (1978)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.dis.uniroma1.it/challenge9/download.html
https://snap.stanford.edu/data/com-DBLP.html
http://law.di.unimi.it/webdata/gsh-2015-host
http://arxiv.org/abs/1806.01799

Making graphs compact by lossless contraction

49. Jaakkola, M.S.T., Szummer, M.: Partially labeled classification
with markov random walks. NIPS 14 (2002)

50. Jin, R., Xiang, Y., Ruan, N.,Wang, H.: Efficiently answering reach-
ability queries on very large directed graphs. In: SIGMOD (2008)

51. Johnson, A.E., Pollard, T.J., Shen, L., Li-Wei, H.L., Feng, M.,
Ghassemi, M., Moody, B., Szolovits, P., Celi, L.A., Mark, R.G.:
MIMIC-III, a freely accessible critical care database. Sci. Data
3(1), 1–9 (2016)

52. Kang,U., Faloutsos, C.: Beyond’caveman communities’: Hubs and
spokes for graph compression and mining. In: ICDM, pp. 300–309
(2011)

53. Kang, U., McGlohon, M., Akoglu, L., Faloutsos, C.: Patterns on
the connected components of terabyte-scale graphs. In: ICDM, pp.
875–880 (2010)

54. Karimi, R., Koppelman, D.M., Michael, C.J.: GPU road network
graph contraction and SSSP query. In: ICS (2019)

55. Karypis, G., Kumar, V.: Multilevelk-way partitioning scheme for
irregular graphs. JPDC 48(1), 96–129 (1998)

56. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of
influence through a social network. In: SIGKDD, pp. 137–146
(2003)

57. Koch, I.: Enumerating all connected maximal common subgraphs
in two graphs. TCS 250(1–2), 1–30 (2001)

58. Kropatsch,W.: Building irregular pyramids by dual-graph contrac-
tion. In: Vision Image and Signal Processing (1996)

59. Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social
networks. In: KDD (2009)

60. LeFevre, K., Terzi, E.: Grass: Graph structure summarization. In:
SDM (2010)

61. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D.,
Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S.,
Bizer, C.: DBpedia - A large-scale, multilingual knowledge base
extracted from Wikipedia. Semantic Web 6(2), 167–195 (2015)

62. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive
and negative links in online social networks. In: WWW, pp. 641–
650 (2010)

63. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graphs over time:
densification laws, shrinking diameters and possible explanations.
In: SIGKDD (2005)

64. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Com-
munity structure in large networks: Natural cluster sizes and the
absence of large well-defined clusters. CoRR arXiv:0810.1355
(2008)

65. Leung, K., Leckie, C.: Unsupervised anomaly detection in network
intrusion detection using clusters. In: ACSW (2005)

66. Liang, Y., Zhao, P.: Similarity search in graph databases: a multi-
layered indexing approach. In: ICDE (2017)

67. Liu, Y., Safavi, T., Dighe, A., Koutra, D.: Graph summarization
methods and applications: A survey. ACM Comput. Surv. 51(3),
62:1-62:34 (2018)

68. Lu, C., Yu, J.X., Wei, H., Zhang, Y.: Finding the maximum clique
in massive graphs. PVLDB 10(11) (2017)

69. Maccioni, A., Abadi, D.J.: Scalable pattern matching over com-
pressed graphs via dedensification. In: SIGKDD (2016)

70. McAuley, J., Leskovec, J.: Learning to discover social circles in
ego networks. In: NIPS (2012)

71. Miller, G.A.: WordNet: a lexical database for English. Commun.
ACM 38(11), 39–41 (1995)

72. Myoungji, H., Hyunjoon, K., Geonmo, G., Kunsoo, P., Wook-
Shin, H.: Efficient subgraph matching: harmonizing dynamic
programming, adaptive matching order, and failing set together.
In: SIGMOD (2019)

73. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization
with bounded error. In: SIGMOD (2008)

74. Newman, M.E., Watts, D.J., Strogatz, S.H.: Random graph models
of social networks. PNAS 99(suppl 1), 2566–2572 (2002)

75. Pandey, S., Li, X.S., Buluc, A., Xu, J., Liu, H.: H-index: Hash-
indexing for parallel triangle counting on GPUs. In: HPCS, pp.
1–7 (2019)

76. Papadopoulos, S., Kompatsiaris, Y., Vakali, A., Spyridonos, P.:
Community detection in social media. Data Min. Knowl. Discov.
24 (2012)

77. Ramalingam, G., Reps, T.: On the computational complexity of
dynamic graph problems. TCS 158(1–2), 233–277 (1996)

78. Ren, X., Wang, J.: Exploiting vertex relationships in speeding up
subgraph isomorphism over large graphs. PVLDB 8(5), 617–628
(2015)

79. van Rest, O., Hong, S., Kim, J., Meng, X., Chafi, H.: PGQL: A
property graph query language. In: GRADES (2016)

80. Rossi, R.A., Ahmed, N.K.: The network data repository with inter-
active graph analytics and visualization. In: AAAI (2015)

81. Sakr, S., Al-Naymat, G.: Graph indexing and querying: a review.
IJWIS 6(2), 101–120 (2010)

82. Sha, M., Li, Y., Tan, K.: Gpu-based graph traversal on compressed
graphs. In: SIGMOD, pp. 775–792 (2019)

83. Shen, Z., Ma, K.L., Eliassi-Rad, T.: Visual analysis of large het-
erogeneous social networks by semantic and structural abstraction.
TVCG 12(6), 1427–1439 (2006)

84. Soundarajan, S., Tamersoy, A., Khalil, E.B., Eliassi-Rad, T., Chau,
D.H., Gallagher, B., Roundy, K.: Generating graph snapshots from
streaming edge data. In: WWW (2016)

85. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM
J. Comput. 1(2), 146–160 (1972)

86. Tian, Y., Balmin, A., Corsten, S.A., Tatikonda, S., McPherson, J.:
From“ think like a vertex” to“ think like a graph”. PVLDB 7(3),
193–204 (2013)

87. Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph
summarization. In: SIGMOD (2008)

88. Valiant, L.G.: A bridging model for parallel computation. CACM
33(8), 103–111 (1990)

89. Vieira, M.V., Fonseca, B.M., Damazio, R., Golgher, P.B., Reis,
D.d.C., Ribeiro-Neto, B.: Efficient search ranking in social net-
works. In: CIKM (2007)

90. W3CRecommendation: SPARQLquery language for RDF. https://
www.w3.org/TR/rdf-sparql-query/ (2008)

91. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-
world’networks. Nature 393(6684), 440 (1998)

92. Wu, Y., Jin, R., Zhang, X.: Efficient and exact local search for
random walk based top-k proximity query in large graphs. TKDE
28(5), 1160–1174 (2016)

93. Yahia, S.A., Benedikt,M., Lakshmanan, L.V., Stoyanovich, J.: Effi-
cient network aware search in collaborative tagging sites. PVLDB
1(1), 710–721 (2008)

94. Yang, J., Leskovec, J.: Defining and evaluating network communi-
ties based on ground-truth. In: ICDM (2012)

95. Yildirim, H., Chaoji, V., Zaki, M.J.: Grail: Scalable reachability
index for large graphs. PVLDB 3(1-2) (2010)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/0810.1355
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/

	Making graphs compact by lossless contraction
	Abstract
	1 Introduction
	2 A graph contraction scheme
	2.1 Contraction scheme
	2.2 Identifying regular structures
	2.3 Contraction algorithm
	2.4 Parallel contraction algorithm

	3 Proof of concept
	3.1 Graph pattern matching with contraction
	3.1.1 Contraction for SubIso
	3.1.2 Subgraph isomorphism

	3.2 Triangle counting with contraction
	3.2.1 Contraction for TriC
	3.2.2 Triangle counting

	3.3 Shortest distance with contraction
	3.3.1 Contraction for Dist
	3.3.2 Shortest distance

	3.4 Connected component with contraction
	3.4.1 Contraction for CC
	3.4.2 Connected component

	3.5 Clique decision with contraction
	3.5.1 Contraction for CD
	3.5.2 Clique decision

	4 Incremental contraction
	4.1 Incremental contraction problem
	4.2 Incremental contraction algorithm
	4.3 Maintenance of synopses
	4.4 Vertex updates
	4.5 Parallel incremental contraction algorithm

	5 Experimental study
	6 Related work
	7 Conclusion
	Acknowledgements
	References

