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ABSTRACT
This paper proposes a scheme for querying big graphs with a single
machine. The scheme iteratively contracts regular structures into
supernodes and builds a hierarchy of contracted graphs, until the
one at the top fits into the memory. For each query class Q in
use, supernodes carry synopses 𝑆Q such that queries of Q are
answered by using 𝑆Q if possible, and otherwise by drilling down
to the next level with decontraction of a bounded size. Moreover,
we show how to adapt a variety of existing sequential (single-
machine) algorithms to the hierarchy by reusing their logic and
data structures. We also provide a bounded incremental algorithm
to maintain the contracted graphs in response to updates, such that
its cost is determined by the sizes of changes to the input and output
only. Using real-life and synthetic graphs, we experimentally verify
that with a single machine, the hierarchy is able to compute exact
query answers when memory is as small as 7.6% of graphs, speeds
up various applications by 9.8 times on average, and is even 120.1
times faster than some parallel graph systems that use 6 machines.
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1 INTRODUCTION
Computations on big graphs are often costly and resource demand-
ing. Consider checking the connectivity of a graph with billions of
nodes and trillions of edges, e.g., Hyperlink 2012 Web graph [61].
This routine application takes 341s on a 1000-node cluster with
12000 processors and requires at least 128TB memory [70]. The cost
is more staggering when it comes to, e.g., graph pattern matching
(subgraph isomorphism), which is intractable (cf. [35]).

One might think that we could accommodate big graphs by em-
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ploying parallel systems and adding more processors when needed.
However, the use of more processors comes with higher commu-
nication cost. As indicated in [60], many parallel graph systems
“have either a surprisingly large COST, or simply underperform one
thread” due to the overhead. Moreover, many algorithms are not
parallelly scalable, i.e., it is not guaranteed that the more processors
are used, the faster the algorithms run. Worse yet, there exist graph
computation problems for which the parallel scalability is beyond
reach, i.e., no matter how many processors are added, the computa-
tion takes no less time regardless of what algorithms are used [30].
Even when parallel graph computations are effective, employing
12000 processors is beyond the capacity of many companies, which
can typically afford only limited computing resources.

A variety of approaches have been explored to tackling this
problem. One approach is to make big graphs small, e.g., graph sum-
marization [54] and compression [14]. However, these techniques
target a specific query class, while in practice, multiple applica-
tions (different query classes) often run on the same graph. It is
impractical to maintain a different compressed dataset for each
application in use. Furthermore, there is no guarantee that the sum-
maries or compressed graphs are small enough to fit into the mem-
ory and moreover, retain sufficient information to compute exact
query answers. Another approach is proposed by GraphChi [47].
GraphChi simulates parallel computations with parallel sliding
windows on a single machine, by using disk as memory extension.
Mosaic [56] optimizes GraphChi by exploiting the heterogeneous
devices. However, this approach requires users to recast existing
graph algorithms into a vertex-centric model, and is picky on the
types of computations; it is not efficient for, e.g., dynamic ordering.

These give rise to several questions. Is it possible to make graphs
small enough to fit into the memory of a single machine, and sup-
port multiple applications on the same graph? Is it within the reach
to handle multiple query classes and compute exact answers? Can
we adapt existing single-machine algorithms to the setting, instead
of recasting the algorithms into a new computation model?

These questions concern whether we can query big graphs under
limited resources. The capacity is also needed by mobile devices and
secure computation [20], which can only handle limited amount of
data. It also helps companies reduce cost and improve efficiency.

Contributions & organization. This paper proposes a new
scheme for answering these questions, in the affirmative.
(1) A hierarchical scheme (Section 2). We propose a scheme that rep-
resents a big graph in a hierarchy. It iteratively contracts regular
structures into supernodes, until the one at the top level fits into the
memory of a single machine. For each query class Q in use, supern-
odes carry synopses 𝑆Q of data needed for answering queries of
Q. The depth of the hierarchy is determined by resources available.
We find that typically 2-4 levels suffice to cope with real-life graphs.
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The scheme is generic and lossless, i.e., it is able to compute exact
answers to different classes of queries using the same hierarchy.
(2) Contracting algorithm (Section 3). We develop an algorithm to
contract a graph into a hierarchy, by contracting frequent regular
structures of different types of graphs, e.g., knowledge bases, Web
graphs, transportation networks, collaboration and social graphs.
We also define common synopses of these regular structures.
(3) Exact query answers (Section 4). We show how to adapt existing
sequential (single-machine) graph algorithms to the scheme by
reusing their logic and data structures. Given a query 𝑄 ∈ Q, we
start the evaluation at the top level of the hierarchy. We answer 𝑄
with synopses 𝑆Q if possible, and drill down to the next level by
decontraction otherwise, one at a time within a bounded size.

The scheme is able to compute exact query answers. Moreover, it
speeds up processing of a variety of queries. As a proof of concept,
we pick six query classes: PageRank (PR), label-constrained
connectivity (LCC), subgraph isomorphism (SubIso), clique
decision (CD) , connected component (CC) and regular path query
(RPQ), based on the dichotomies below:
◦ local (SubIso, PR, CD) vs. non-local (LCC, CC, RPQ);
◦ labeled (SubIso, LCC, RPQ) vs. non-labeled (PR, CD, CC);
◦ NP-hard (SubIso, CD) vs. tractable (PR, LCC, CC, RPQ).

These represent applications such as graph traversal (LCC), pat-
tern matching (SubIso), online queries (PR), community search
(CD) [63], graph partition and randomwalk (CC) [41], and database
query language (RPQ).We show that all these queries can be exactly
answered with synopses, without decontracting any supernodes
of regular structures, sometimes even without any decontraction.

In principle, the scheme is able to support queries of any Q on
big graphs, subject to I/O cost. Nonetheless, as indicated above,
only limited decontraction and I/O are needed in many cases.
(4) Incremental contraction (Section 5). We develop an incremental
algorithm to maintain the contracted scheme in response to updates
to the original graph 𝐺 , with a single machine. We show that the
algorithm is bounded [65], i.e., its cost is determined by the size of
the areas affected by the updates, not by the size of the entire 𝐺 .
(5) Experimental study (Section 6). Using real-life and synthetic
graphs, we empirically verify the following. (a) To perform
comparably with memory-based approaches, the contraction
hierarchy is able to compute exact query answers when memory
is as small as 7.6% of graphs. On average, (b) it is 705.7, 49.6 and
14.1 times faster than single-machine solutions GraphChi [47],
Mosaic [56] and COST [60] for PR, LCC, SubIso, CC, CD and RPQ
(GraphChi could not complete within 2 hours for SubIso and both
GraphChi andMosaic ran out of memory for CD), respectively. (c)
It even outperforms parallel systems that use multiple machines. It
is (i) 74.3, 1.3, 2.4 and 404.7 times faster than PowerGraph [36] that
uses 6 machines for LCC, PR, SubIso and CC, respectively; it is
faster than (ii) GRAPE [4, 33] for LCC, SubIso, CC and RPQ using
2, 1, 5 and 1 machines, respectively; (iii) Gemini [80] for LCC,
SubIso and CC using 6, 3 and 6 machines, respectively; and (iv)
LA3 [6] for LCC, SubIso, CC and RPQ using 6, 6, 6 and 1 machines,
respectively. (d) Our incremental contraction algorithm is effective.
It is faster than batch contraction even when |Δ𝐺 | is up to 25%|𝐺 |.

Related work. We categorize the related work as follows.
(1) Reducing big graphs. Graph compression [23, 28, 42, 57] and
graph summarization [49, 54, 73] aim to reduce big graphs by merg-
ing nodes or subgraphs into supernodes. Graph compression com-
putes query-equivalence relations and merges “equivalent” nodes;
e.g., [28, 42] answer reachability queries by merging nodes in the
same transitive closure. Graph summarization generates summaries
for nodes or subgraphs; e.g., [49] aggregates node clusters into su-
pernodes labeled with the numbers of edges within and between
the clusters, for adjacency, degree and centrality queries.

As opposed to the prior work, (a) our scheme is generic and loss-
less. In contrast, graph compression is query dependent and sum-
marization is usually lossy. (b) We can adapt existing algorithms
to the scheme by using their logic and data structures while new
algorithms often have to be developed for compression and summa-
rization. (c) Our scheme aims to reduce graphs to fit into memory,
which is not guaranteed by compression and summarization.

Closer to this work is [29], which proposes to contract graphs as
an optimization strategy. This work substantially extends [29]. (a)
We contract graphs under a memory constraint to support multiple
applications on a single machine. In contrast, [29] does not have to
conform to a predefined memory bound. (b) To cope with memory
bound, we contract a graph into a hierarchy, as opposed to a single
contracted graph of [29]. (c) We contract a variety of frequent
regular structures based on the types of graphs (see Section 3), and
develop their synopses. In contrast, [29] adopts an one-size-fit-all
solution and contracts only cliques, paths and stars for all types
of graphs. (d) We experiment with larger graphs to evaluate the
capacity of a single machine for querying big graphs.
(2) Querying big graphs. To scale with big graphs, several parallel
graph computation systems have been developed, e.g., PowerGraph
[36, 55], Giraph++ [72], GRAPE [5, 33], Gemini [80], LA3 [6] and
Pregel+ [77]. These systems partition a big graph into small parts
and process all parts in parallel. However, parallel computations
are not effective for all problems [30]; many parallel systems incur
heavy communication cost and cannot beat the best single-threaded
implementation [60]. Worse still, a large cluster of machines is often
beyond the reach of those companies with limited resources.

A different approach is to query big graphs with a single machine,
e.g.,GraphChi [47],Mosaic [56],GridGraph [22] andNXgraph [77].
Below we discuss representative GraphChi andMosaic. GraphChi
splits an input graph into disjoint intervals, which are stored in disks
by using disk as memory extension. It adopts vertex-centric model
and parallel sliding windows (PSW) to extract induced subgraph
with non-sequential disk accesses to the intervals. PSW runs the
user-defined update-function for each vertex, modifies values and
writes updated values back to the disk in parallel. Mosaic uses a
2-level scheme to partition a graph into disjoint sets of edges, called
tiles. Such tiles are compressed with local vertex identifier to fit into
the last level cache and are processed following the Hilbert order.
Mosaic also adopts the vertex-centric model, while exploiting the
massive parallelism provided by modern heterogeneous hardware.

GraphChi,Mosaic and this work aim to query big graphs with
a single machine. Our scheme differs from GraphChi andMosaic
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Figure 1: Hierarchical contraction scheme

in the following. (a) Our scheme annotates supernodes with syn-
opses. As will be seen in Section 4, the synopses often have enough
information to answer queries without the need for decontraction
and hence, without disk accesses. (b) GraphChi splits nodes into
disjoint intervals and stores edges with the same head together in
the same interval.Mosaic partitions a graph into tiles following the
Hilbert order and yields a compact representation for each tile. In
contrast, our scheme contracts regular structures into supernodes,
including their edges. Hence, when decontraction is necessary, our
scheme needs only sequential disk accesses to load a subgraph,
while GraphChi andMosaic require non-sequential disk accesses.
(c) One can often adapt existing single-machine graph algorithms to
the hierarchical scheme by reusing their logic and data structures,
while GraphChi and Mosaic require users to recast the algorithms
into a vertex-centric model. (d) As a result of using PSW, loading
the neighborhood of a single node on GraphChi [47] has to scan
all edges in disk; similarly for Mosaic since it is also vertex-centric.
In contrast, our scheme is “graph-centric” and can accommodate
existing single-machine graph algorithms.
(3) Bounded evaluation. Bounded evaluation is another approach
to making big graphs small [18, 21, 26]. Given a query 𝑄 on a big
dataset 𝐷 , it is to access a subset 𝐷𝑄 of 𝐷 by leveraging an access
schemaA, such that𝑄 (𝐷𝑄 ) = 𝑄 (𝐷) and the cost of identifying and
fetching𝐷𝑄 is decided by the sizes of𝑄 andA, regardless of the size
of 𝐷 . The idea has been extended to graph pattern matching [19].

This work is quite different. (1) Bounded evaluation requires to
build and maintain access schema. As indicated in [19], the size
of access schema schema could be as large as the original graph.
(2) To support multiple applications, for each of the applications,
bounded evaluation requires a different access schema, which is
prohibitively costly. Hence bounded evaluation does not suffice to
support multiple graph applications under limited resources.

2 A HIERARCHICAL GRAPH SCHEME
In this section, we present the hierarchical contraction scheme.

Preliminaries. We start with basic notations.
Graphs. Assume an infinite set Θ for labels. We consider undirected
graphs 𝐺 = (𝑉 , 𝐸, 𝐿) with labels on nodes and edges, where (a) 𝑉
is a finite set of nodes, (b) 𝐸 ⊆ 𝑉 ×𝑉 is a bag of edges, and (c) for
each node 𝑣 ∈ 𝑉 (resp. edge 𝑒 ∈ 𝐸), 𝐿(𝑣) ∈ Θ (resp. 𝐿(𝑒)) is a label.
Queries. A graph query is a computable function from a graph𝐺 to,
e.g., a Boolean value, a graph, or a relation. For instance, a query of

label-constrained connectivity (LCC) [10] on𝐺 consists of two nodes
𝑢, 𝑣 in 𝐺 and a label set 𝐿; it is a Boolean function that returns true
iff there exists a path from 𝑢 to 𝑣 on which all labels of the nodes
are covered by 𝐿. A query class Q is a set of queries of the same
“type”, i.e., all LCC queries. We also refer to Q as an application. In
practice, multiple applications often run on the same graph 𝐺 .

Problem. We study the problem of querying graphs 𝐺 when (1) we
can afford at most main memory of size 𝑀 to store the data of 𝐺 ,
and a disk of an unbounded size. The disk is formatted into disjoint
blocks, each of which has size 𝐵; and (2) the size of the entire graph
𝐺 exceeds 𝑀 . We use a buffer of size 𝐵 in the main memory for
loading subgraphs (blocks) from disk, at most one at a time.
◦ Setting: A graph 𝐺 stored in disk, query classes Q1, . . . ,Q𝑛 in
use, buffer size 𝐵 and memory capacity𝑀 such that |𝐺 | > 𝑀 .

◦ Objective: A hierarchy H of contracted graphs such that
• the contracted graph𝐺𝑘 at the top level ofH can reside in
the memory, i.e., |𝐺𝑘 | ≤ 𝑀 ;

• for all 𝑖 ∈ [1, 𝑛] and queries 𝑄 ∈ Q𝑖 , exact answers 𝑄 (𝐺)
can be computed in H (possibly with decontraction); and

• the cost of computing 𝑄 (𝐺) is minimized.
We next define the hierarchical contraction scheme.

Hierarchy. A hierarchical contraction scheme H consists of 𝑘
levels ⟨𝑓 1

𝐶
,S1, 𝑓 1

𝐷
, 𝑓 1
𝑅
⟩, . . . , ⟨𝑓 𝑘

𝐶
,S𝑘 , 𝑓 𝑘

𝐷
, 𝑓 𝑘
𝑅
⟩ with contracted graphs

𝐺1, . . . ,𝐺𝑘 . We refer to 𝐺𝑖 and ⟨𝑓 𝑖
𝐶
,S𝑖 , 𝑓 𝑖

𝐷
, 𝑓 𝑖
𝑅
⟩ as the contracted

graph and contraction scheme at level 𝑖 , respectively, such that
(1) 𝐺1 = 𝑓 1

𝐶
(𝐺) and 𝐺𝑖 = 𝑓 𝑖

𝐶
(𝐺𝑖−1), i.e., 𝐺𝑖 is the contracted graph

of𝐺𝑖−1 by contraction function 𝑓 𝑖
𝐶
at level 𝑖; 𝑓 𝑖

𝐶
contracts certain

subgraphs 𝐻 of size at most 𝐵 in𝐺𝑖−1 into supernodes 𝑣𝐻 in𝐺𝑖 ;
(2) for each query class Q in use, a synopsis function 𝑆𝑖Q ∈ S𝑖 is

associated for answering queries of Q, which extends 𝑆𝑖−1Q ;
(3) 𝑓 𝑖

𝐷
is the decontraction function at level 𝑖 that restores each

supernode 𝑣𝐻 in 𝐺𝑖 to its contracted subgraph 𝐻 in 𝐺𝑖−1;
(4) 𝑓 𝑖

𝑅
is a function at level 𝑖 that keeps track of nodes in subgraph

𝐻 of 𝐺𝑖−1 when 𝐻 is contracted into a supernode 𝑣𝐻 in 𝐺𝑖 ; as
opposed to 𝑓 𝑖

𝐷
, 𝑓 𝑖

𝑅
does not restore the structure of 𝐻 ; and

(5) the contracted graph 𝐺𝑘 at the top level has size at most𝑀 .
The depth 𝑘 of the hierarchy is determined by the size of𝐺 and the
resources available. Only𝐺𝑘 resides in the main memory. Labels of
both nodes and edges are only stored once as synopses of 𝐺1.
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Symbols Notations
𝐺 (𝑉 , 𝐸, 𝐿) labeled graph
Q,𝑄 query class Q, query in Q
𝑀,𝐵 main memory size and buffer size
H,𝐺𝑖 hierarchical contraction scheme, contracted graph at level 𝑖
𝑓 𝑖
𝐶
, S𝑖 , 𝑓 𝑖

𝐷
, 𝑓 𝑖

𝑅
contraction, synopsis and decontraction functions at level 𝑖

𝑁 the largest number of edges contracted to a superedge
𝑣𝐻 , 𝐻 subgraph 𝐻 in𝐺𝑖−1 contracted into a supernode 𝑣𝐻 in𝐺𝑖

𝑉 (𝐻 ), 𝐸 (𝐻 ) the node set and edge set of subgraph 𝐻 , respectively
𝑘𝑙 , 𝑘𝑢 the lower and upper size bound of the regular structures

Table 1: Notations
Example 1: Figure 1 shows a 2-level contraction hierarchy. Graph
𝐺0 (Fig. 1(a)) is a fraction of Twitter network, in which a node
denotes a user (𝑢), a tweet (𝑡 ) or a keyword (𝑘). An edge indicates
the following: (1) (𝑢,𝑢 ′), a user follows another; (2) (𝑢, 𝑡), a user
posts a tweet; (3) (𝑡, 𝑡 ′), a tweet retweets another; (4) (𝑡, 𝑘), a tweet
tags a keyword; (5) (𝑘, 𝑘 ′), two keywords are highly related; or (6)
(𝑢, 𝑘), a user is interested in a keyword. In𝐺0, subgraphs in dashed
rectangles are contracted into supernodes, and the remaining nodes
are mapped to themselves, yielding contracted graph 𝐺1 at level
1 (Fig. 1(b)). In a similar manner, contracting subgraphs in dashed
rectangles in 𝐺1 yields contracted graph 𝐺2 (Fig. 1(c)). Graph 𝐺2
fits in memory and is at the top level of the hierarchy. Synopses are
shown in Figure 1(d)-(e) andwill be illustrated in Sections 3 and 4. 2

As will be seen in Section 4, the hierarchy is generic, i.e., the same
hierarchy is used to answer different classes of queries, and the same
synopses in 𝑆𝑖Q are used to answer all queries in Q. Moreover, it is
lossless, i.e., we can compute exact query answers without loss of
information, by means of the synopses and decontraction functions.

Contraction. We now outline how we contract a graph 𝐺 into a
hierarchyH . Starting from𝐺0 = 𝐺 and 𝑖 = 1, we “recursively” con-
tract𝐺𝑖−1 into𝐺𝑖 until we reach level 𝑘 such that |𝐺𝑘 | ≤ 𝑀 , in two
phases. (1) At each level 𝑖 ofH , we contract regular structures only.
(2) Phase (1) proceeds until we reach a level where |𝐺𝑖 |/|𝐺𝑖−1 | > 𝑡𝑝
and 0<𝑡𝑝<1 is a predefined threshold, i.e., when𝐺𝑖 has no substan-
tial improvement on 𝐺𝑖−1 by contracting regular structures; we
then further conduct edge contraction and stop at level 𝑖 , i.e., 𝑖 = 𝑘

and𝐺𝑘 is at the top level ofH . Below we elaborate the two phases.
Topology contraction. The contraction at level 𝑖 is carried out by
function 𝑓 𝑖

𝐶
, to build contracted graph 𝐺𝑖 . (1) It maps each node 𝑣

in graph𝐺𝑖−1 to a supernode in𝐺𝑖 , which either contracts a regular
structure 𝐻 into 𝑣𝐻 or is node 𝑣 itself. (2) It includes a superedge
(𝑣𝐻1, 𝑣𝐻2) in 𝐺𝑖 if there exist nodes 𝑣1 and 𝑣2 in 𝐺𝑖−1 such that
𝑓 𝑖
𝐶
(𝑣1) = 𝑣𝐻1, 𝑓 𝑖𝐶 (𝑣2) = 𝑣𝐻2 and (𝑣1, 𝑣2) is an edge in 𝐺𝑖−1.

Edge contraction. When |𝐺𝑖 |/|𝐺𝑖−1 | > 𝑡𝑝 and |𝐺𝑖−1 | > 𝑀 , we fur-
ther contract edges in𝐺𝑖−1 until |𝐺𝑖 | ≤ 𝑀 . More specifically, we re-
peatedly contract edges into supernodes as long as (a) such edges are
connected, and (b) each contracted subgraph has a size of at most 𝐵.

We will present our contraction algorithm in Section 3.1.

Synopses. For each query class Q in use, a synopsis function 𝑆𝑖Q
retains necessary features of the contracted subgraphs for answer-
ing queries of Q. The function 𝑆𝑖Q at level 𝑖 extends 𝑆𝑖−1Q as follows.
Let 𝑣𝐻 be a supernode in 𝐺𝑖 . Then synopsis 𝑆𝑖Q (𝑣𝐻 ) is generated
by composing and aggregating synopses 𝑆𝑖−1Q (𝑣) of nodes 𝑣 in𝐺𝑖−1
that are contracted to 𝑣𝐻 by 𝑓 𝑖

𝐶
, i.e., 𝑓 𝑖

𝐶
(𝑣) = 𝑣𝐻 . For LCC, e.g., the

synopsis of a supernode is the set of node labels in the contracted

(a) clique (b) star (c) path (d) diamond (e) butterfly

Figure 2: Frequent regular structures

subgraphs, and the aggregation is simply set union. We will give
more details about synopses 𝑆Q in Sections 3 and 4. Moreover, we
will see that different query classes often share common synopses.

Decontraction. As remarked earlier, we decontract a supernode
𝑣𝐻 or a superedge (𝑣𝐻1, 𝑣𝐻2) with decontraction function 𝑓 𝑖

𝐷
only

when necessary, to compute exact query answers. Consider a sub-
graph 𝐻 that is contracted to a supernode 𝑣𝐻 , where 𝑉 (𝐻 ) and
𝐸 (𝐻 ) denote the sets of nodes and edges in 𝐻 , respectively.

There are two forms of decontraction. Decontraction of supernode
𝑣𝐻 restores subgraph 𝐻 that is contracted to 𝑣𝐻 . Decontraction of
superedge (𝑣𝐻1, 𝑣𝐻2) just restores edges between𝑉 (𝐻1) and𝑉 (𝐻2)
(𝑓 𝑖
𝐷
(𝑣𝐻1, 𝑣𝐻2) fetches only edges contracted to the superedge from

disk). We also use 𝑓 𝑖
𝑅
that retrieves only nodes in 𝐻 (no edges).

We ensure that the decontracted subgraph 𝐻 can fit in buffer
𝐵. The decontraction of a supernode 𝑣𝐻 in 𝐺𝑖 consists of three
parts: (1) restoring the structure of subgraph 𝐻 in 𝐺𝑖−1 that is
contracted into 𝑣𝐻 by 𝑓 𝑖

𝐶
; (2) recovering the synopses of nodes in

𝑉 (𝐻 ); and (3) recovering edges in𝐺𝑖−2 that are contracted to some
edges in 𝐻 . For (1), (a) when 𝐻 is a regular structure, its structure
can be recovered by synopsis without decontraction and the size
|𝐸 (𝐻 ) | is easy to known (see Section 3); (b) when 𝐻 is contracted
by edges, decontraction restores |𝐸 (𝐻 ) | edges. For (2), the size can
be calculated by aggregating corresponding synopses. For (3), we
maintain a number 𝑁 that indicates the largest number of edges
contracted to a superedge. In each iteration to contract𝐺𝑖−1 into𝐺𝑖 ,
𝑁 is updated by the superedges constructed. Then, an upper bound
of edges that may be loaded into memory is 𝑁 × |𝐸 (𝐻 ) |. Note that
if the number of edges in 𝐻 being decontracted simultaneously is
bounded by a constant 𝑐 , then the edges to load into memory is
bounded by 𝑁 × 𝑐 . We contract a subgraph into a supernode if its
decontraction and associated synopses have a total size at most 𝐵.

When answering queries, supernode and superedge decontrac-
tion can be conducted at any level of the hierarchy. We will show in
Section 4 that regular structures typically do not need decontraction,
while superedge decontraction is often needed.

The notations of this paper are summarized in Table 1.

3 CONTRACTING BIG GRAPHS
In this section, we first develop an algorithm to construct a hierar-
chy of contracted graphs (Section 3.1). We then show how synopses
are defined for various regular structures (Section 3.2).

3.1 Contraction Algorithm
Different types of graphs contain different frequent regular struc-
tures, e.g., cliques are ubiquitous in social graphs while paths are
only effective in chemical graphs and road networks. As shown in
Fig. 2, we identify frequent regular structures for different types of
real-life graphs, and contract those that could improve contraction
ratio of each level without incurring heavy I/O cost.
Contraction order. Table 2 shows how these structures appear as
subgraphs in 10 types of graphs, ordered by their supports from high
to low. We contract such structures 𝐻 in different types of graphs
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Graph type Regular structures (ordered by support)
social graphs clique, diamond, star, butterfly
communication networks star, bipartite graph
citation networks clique, star, diamond, butterfly, cycle
Web graphs star, clique, diamond
knowledge graphs star, claw, doubleclaw
collaboration networks clique, bipartite graph, star
biomedical graphs star, cycle, clique, path
economic networks star
chemical graphs cycle, claw, path
road networks star, path, doubleclaw, cycle
Table 2: Common structures in different types of graphs

𝐺 following the order of Table 2, denoted as 𝑇 (𝐺), to ensure that
important structures are contracted earlier and preserved.Within𝐻 ,
the only edges are those that form𝐻 . Edges are allowed from nodes
in 𝐻 to nodes outside 𝐻 , except from intermediate nodes on a path.

Note that the order 𝑇 (𝐺) is determined by the type of 𝐺 , e.g.,
social graphs, in order to improve the efficiency of computations on
the graph. It is learned once offline regardless of individual graph𝐺 .
The contraction hierarchy is stable, by contracting nodes by their
IDs and regular structures in a deterministic order. Besides, the
contraction hierarchy of each graph is computed once offline, and
incrementally maintained in response to updates (Section 5).
Size bounds. We contract a regular structure𝐻 such that the number
of its nodes is in the range [𝑘𝑙 , 𝑘𝑢 ]. The reason is twofold. (1) We set
a lower bound since if𝐻 is too small, the contracted graphswould be
over-contracted with an excessive number of supernodes, and leads
to a deep hierarchy and high I/O overhead for decontraction. (2)
We deduce an upper bound 𝑘𝑢 based on the buffer size 𝐵 (Section 2),
such that when we decontract 𝑣𝐻 , the subgraph 𝐻 fits in buffer 𝐵.
(3) We experimentally find that the best 𝑘𝑙 and 𝑘𝑢 for our datasets
tested are around 4 and 500, respectively.

These bounds apply to regular structures cliques, paths and stars,
while diamonds and butterflies have a constant size. The upper
bound for contracting edges is deduced similarly. To fit in memory,
edge contraction (at the top level) has no lower bound.

Contraction algorithm. Adopting the pre-computed order 𝑇 (𝐺),
we present an algorithm to construct a hierarchy for a given graph
𝐺 , denoted as HCon and shown in Fig. 3. HCon repeatedly calls
procedure LCon, which generates 𝐺𝑖 and ⟨𝑓 𝑖

𝐶
,S𝑖 , 𝑓 𝑖

𝐷
, 𝑓 𝑖
𝑅
⟩ from the

contracted graph 𝐺𝑖−1 at level 𝑖 − 1 (lines 2-5). More specifically,
LCon preprocesses 𝐺𝑖−1 by partitioning it into subgraphs 𝑔 and
then iteratively loads subgraphs 𝑔 of 𝐺𝑖−1 into memory and con-
tracts regular structures in 𝑔 into supernodes following the order
of 𝑇 (𝐺), until |𝐺𝑖 | ≤ 𝑀 or |𝐺𝑖 |/|𝐺𝑖−1 | > 𝑡𝑝 (see Section 2). Here
𝑔 can be an arbitrary subgraph as long as it can fit in the memory.
All nodes that are not contracted into regular structures are further
partitioned into subgraphs for contraction. If the size of 𝐺𝑖−1 still
exceeds bound𝑀 , HCon further contracts edges in 𝐺𝑖−1 by calling
procedure TCon (not shown) to make |𝐺𝑖 | ≤ 𝑀 (lines 6-7).

Given𝐺𝑖−1, procedure LCon builds𝐺𝑖 . Initially, all nodes in𝐺𝑖−1
are marked as “uncontracted”. It then contracts frequent regular
structures in 𝐺𝑖−1 by following the pre-computed order 𝑇 (𝐺), one
by one (lines 2-5). For instance, it extracts a clique by repeatedly
picking an uncontracted node that is adjacent to all selected ones,
subject to bounds 𝑘𝑙 and 𝑘𝑢 ; it extracts a star by first picking a cen-

Algorithm HCon
Input: A graph𝐺 , memory capacity𝑀 , threshold 𝑡𝑝 and buffer size 𝐵.
Output: The hierarchical scheme ⟨𝑓 1

𝐶
, S1, 𝑓 1

𝐷
, 𝑓 1

𝑅
⟩, . . . , ⟨𝑓 𝑘

𝐶
, S𝑘 , 𝑓 𝑘

𝐷
, 𝑓 𝑘

𝑅
⟩.

1. 𝐺0 := 𝐺 ; 𝑖 := 1;𝑇 (𝐺) := precomputed ordered set of structures of𝐺 ;
2. while |𝐺𝑖−1 | > 𝑀 Do
3. ⟨𝑓 𝑖

𝐶
, S𝑖 , 𝑓 𝑖

𝐷
, 𝑓 𝑖

𝑅
⟩ := LCon(𝐺𝑖−1,𝑇 (𝐺)) ;

4. if |𝐺𝑖 |/ |𝐺𝑖−1 | ≤ 𝑡𝑝 then break;
5. 𝑖 := 𝑖 + 1;
6. if |𝐺𝑖−1 | > 𝑀 then
7. ⟨𝑓 𝑖

𝐶
, S𝑖 , 𝑓 𝑖

𝐷
, 𝑓 𝑖

𝑅
⟩ := TCon(𝐺𝑖−1) ; /* edge contraction*/

8. return ⟨𝑓 1
𝐶
, S1, 𝑓 1

𝐷
, 𝑓 1

𝑅
⟩, . . . , ⟨𝑓 𝑘

𝐶
, S𝑘 , 𝑓 𝑘

𝐷
, 𝑓 𝑘

𝑅
⟩;

Procedure LCon
Input: A graph𝐺𝑖−1, order𝑇 (𝐺) on structures and buffer size 𝐵.
Output: The contracted graph at level 𝑖 ⟨𝑓 𝑖

𝐶
, S𝑖 , 𝑓 𝑖

𝐷
, 𝑓 𝑖

𝑅
⟩.

1. partition𝐺𝑖−1 into subgraphs 𝑔;
2. repeat load subgraphs 𝑔 of𝐺𝑖−1 such that |𝑔 | < 𝑀 ;
3. contract regular structures in the range [𝑘𝑙 , 𝑘𝑢 ] in 𝑔 in order;
4. until all nodes in𝐺𝑖−1 are processed;
5. repeat lines 1-4 for all uncontracted nodes;
6. deduce and return ⟨𝑓 𝑖

𝐶
, S𝑖 , 𝑓 𝑖

𝐷
, 𝑓 𝑖

𝑅
⟩ from the contracted structures;

Figure 3: Algorithm HCon

tral node 𝑣𝑐 , and then repeatedly selecting an uncontracted node
as a leaf that is (a) connected to 𝑣𝑐 and (b) disconnected from all
selected leaves, again subject to 𝑘𝑙 and 𝑘𝑢 ; similarly for the other
structures of Fig. 2. Each of the regular structures consists of uncon-
tracted nodes only, i.e., nodes in 𝐺𝑖−1 are contracted at most once.
Moreover, the size of each of the structures is in the range of [𝑘𝑙 , 𝑘𝑢 ].
The process proceeds until all nodes in 𝐺𝑖−1 are processed (line 4).
It then deduces ⟨𝑓 𝑖

𝐶
, 𝑆𝑖 , 𝑓 𝑖

𝐷
, 𝑓 𝑖
𝑅
⟩ based on the contraction (line 6).

For every contracted structure with 𝑘 nodes, the size of its edge
set is as follows: (1) cliques: |𝐸 (𝐻 ) | = 𝑘 (𝑘 −1)/2; (2) stars and paths:
|𝐸 (𝐻 ) | = 𝑘−1; (3) diamonds: |𝐸 (𝐻 ) | = 5; and (4) butterflies:|𝐸 (𝐻 ) | =
6. With the size of synopses for 𝐻 (see Section 3.2), one can deduce
upper bound 𝑘𝑢 and estimate the space cost of 𝐻 such that |𝐻 | ≤ 𝐵,
i.e., 𝐻 can be loaded to the buffer when recovering 𝐻 .
Example 2: Given graph 𝐺0 of Fig. 1(a), algorithm HCon builds
the hierarchy of Fig. 1(a) as follows. (1) Since𝐺0 is a social network,
HCon contracts cliques, diamonds, butterflies and stars in this or-
der (Table 2). (2) In 𝐺0, it finds cliques (𝑢1, . . . , 𝑢4) and (𝑘1, . . . , 𝑘5).
It then contracts other regular structures and constructs 𝐺1 (see
Fig. 1(b)). (3) In 𝐺1, it finds only one diamond (𝑠4, 𝑠5, 𝑢14, 𝑘11) to
contract. It then contracts edges and yields 𝐺2 (see Fig. 1(c)). 2

Contracting regular structures saves space. Taking star as an ex-
ample, (1) we only store its central node and leaves, without storing
any edges in the star, e.g., we save the space of 4 edges by contract-
ing a star with 5 nodes and 4 edges, and (2) edges between the nodes
in the star and outside the star are contracted into superedges.
Complexity. Algorithm HCon takes 𝑂 ( |𝐺 |2) time. Indeed, (1) to ex-
tract a clique for a node 𝑣 ,HConmaintains its node set𝐶 , initialized
as {𝑣}, and a set 𝑃 , initialized as the neighbor set of 𝑣 . HCon itera-
tively adds a node 𝑢 from 𝑃 to 𝐶 if it connects to all nodes in 𝐶 , in
time linear to its degree, if there is one. Since each clique contains
at most 𝑘𝑢 nodes, it takes 𝑂 ( |𝐺 |) time to contract each clique and
𝑂 ( |𝐺 |2) time for all cliques. (2) Paths can be built in 𝑂 ( |𝐺 |) time.
(3) Similarly, the other regular structures are contracted in 𝑂 ( |𝐺 |2)
time. Along the same lines as [29], HCon can be parallelized.
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3.2 Deducing Synopses
We next present synopses for contracted subgraphs. For each struc-
ture, here we focus on common features that are shared by all appli-
cations. For a specific query class Q, its synopsis function 𝑆𝑖Q may
be further extended to include features specific to Q (Section 4).
Each contracted component has a specific structure; the synopses
encode its key features to answer queries without decontraction.

The synopsis function 𝑆𝑖 at each level 𝑖 is generated by compos-
ing and aggregating synopses 𝑆𝑖−1 at the lower level. Assume that
at level 0, each node has a synopsis of 𝑆0 (𝑣).𝑠𝑖𝑧𝑒 = 1. We define
synopsis for each structure and the function 𝑆𝑖 at each level 𝑖 as fol-
lows. For supernode 𝑣𝐻 that contracts a subgraph 𝐻 of type 𝜏 , e.g.,
clique, we denote 𝑆𝑖 (𝑣𝐻 ).type = 𝜏 . At the top level 𝐺𝑘 , we denote
𝑆𝑘 (𝑣𝐻 ).type = edge for supernodes 𝑣𝐻 built by edge contraction.
◦ cliques: 𝑆𝑖 (𝑣𝐻 ).size = ∑

𝑣∈𝑣 (𝐻 ) 𝑆
𝑖−1 (𝑣).size is the total number

of level-0 nodes contracted in 𝑣𝐻 ; for the other structures below,
𝑆𝑖 (𝑣𝐻 ).size is defined and aggregated in the same way;

◦ stars: 𝑆𝑖 (𝑣𝐻 ).𝑐 is the central node id;
◦ paths: 𝑆𝑖 (𝑣𝐻 ).list stores the ids of all its nodes in order;
◦ diamonds: 𝑆𝑖 (𝑣𝐻 ).𝑠1 and 𝑆𝑖 (𝑣𝐻 ).𝑠2 store the two shared nodes
of the two triangles; and

◦ butterflies: 𝑆𝑖 (𝑣𝐻 ) .𝑠 is the node shared by the two triangles, and
𝑆𝑖 (𝑣𝐻 ) .𝑒 stores the two disjoint edges.
As an example, the synopses of regular structures in 𝐺1 and 𝐺2

of Figure 1 are shown in Figures 1(d) and (e), respectively. Note that
space |𝑆𝑖 (𝑣𝐻 ) | ≤ |𝑉 (𝐻 ) | +2, including (1) a single value for type; (2)
at most |𝑉 (𝐻 ) | for .c, .list, .s and .e; and (3) a single value for size.

3.3 APIs
The scheme inherits the logic and data structures of existing se-
quential algorithms. It provides new APIs for generating synopses
for new applications and loading contraction functions, synopses
and decontraction functions. The APIs support the following.

For decontracting supernodes/superedges, the scheme provides
functions LoadDeconNode(int depth, *)/LoadDeconEdge(int
depth, *) to load corresponding supernodes/superedges based on the
depth of the hierarchy. Besides, the scheme supports user-defined
functions GenSynopsis () to generate synopses for a new applica-
tion, and GetSynopsis() to access synopses stored in the disk. For
example, GetSynopsis() of LCCAh for supernode 𝑢 returns labels
of all the nodes contracted to supernode 𝑢. Similar to decontraction,
the scheme provides functions LoadConNode(int depth, *) and
LoadConEdge(int depth, *) to load contracted nodes and edges.

4 COMPUTING EXACT ANSWERS
We next show how to adapt existing algorithms to the hierarchy
H , by presenting (1) PageRank (PR), for unlabeled and local on-
line queries; (2) label-constrained connectivity (LCC), for labeled
and non-local online cases; (3) subgraph isomorphism (SubIso), for
intractable cases (Sections 4.1-4.3). We also briefly list connected
components (CC), clique decision (CD) and regular path query
(RPQ) (Section 4.4). GraphChi [47] andMosaic [56] can handle PR
and CC well, but not LCC, SubIso, CD and RPQ .

The main conclusions of the section are as follows.

Theorem 1:With a linear-time synopsis function, there exist algo-

rithms for each of PR, LCC, SubIso, CC, CD and RPQ that can be
adapted to the contraction hierarchy H such that
(1) the adapted algorithms compute exact query answers;
(2) for PR, LCC, SubIso, CD and RPQ , only superedges need decon-

traction, not supernodes of regular structures;
(3) for CC, neither superedges nor supernodes need to be de-

contracted. 2

In a nutshell, given a query 𝑄 ∈ Q, we start the evaluation from
the contracted graph𝐺𝑘 at the top level ofH . When we encounter
a supernode 𝑣𝐻 in 𝐺𝑘 , we answer 𝑄 with its synopsis 𝑆𝑘Q (𝑣𝐻 ) if
possible, and drill down to the next level otherwise by recovering
nodes and/or edges in 𝐺𝑘−1 that are contracted to 𝑣𝐻 . When we
drill down, we evaluate 𝑄 with the data in the contracted graph at
the next level, until we get answers 𝑄 (𝐺) in the original graph 𝐺 .

We highlight the following. (1) The hierarchy is generic, i.e., the
same hierarchy is used to answer different classes of queries, and
the same synopses in 𝑆𝑖Q are used to answer all queries in Q. (2) It
is lossless, i.e., we can compute exact query answers without loss of
information. (3) In principle the hierarchy is able to handle arbitrary
queries on a graph with a single machine, but it may incur heavy
I/O cost for decontraction. This said, in practice it often speeds up
query answering for the following reasons. (a) Synopsis in 𝑆𝑘Q (𝑣𝐻 )
often provides enough information for us either to process 𝑄 at
𝑣𝐻 as a whole or safely skip 𝑣𝐻 ; it also often suffices to decontract
superedges, not supernodes, as indicated in Theorem 1. (b) Query
processing is conducted on smaller contracted graphs. (c) As will
be seen in Section 6, the depth of a hierarchy is usually small. (d)
Supernodes are decontracted only when necessary. (4) When a new
query class is given, its synopses are computed offline over the con-
tracted graph directly. As will be seen in Section 6, the cost of syn-
opses computation is quite small compared to the contraction cost.

4.1 PageRank
We start with PageRank [12, 62], which has been widely used in
applications including Web search [8] and recommendation [79].

For a graph𝐺 , its PageRank vector 𝑝𝑟 iteratively assigns scores
to nodes that represent the stationary distribution of a stochastic
process; hence

∑
𝑢∈𝑉 𝑝𝑟 (𝑢) = 1. In the process, in each iteration,

(1) each node 𝑢 distributes its score evenly to its neighbors 𝑣

through edges (𝑢, 𝑣); and (2) node 𝑢 aggregates scores received
from its neighbors 𝑣 via edges (𝑣,𝑢). More specifically, in the 𝑟 -th
iteration, 𝑝𝑟𝑟 (𝑢) = ∑

(𝑣,𝑢) ∈𝐸 𝑝𝑟
𝑟−1 (𝑣)/𝑑 (𝑣), where 𝑝𝑟𝑟 (𝑣) and 𝑑 (𝑣)

denote the PageRank value in the 𝑟 -th iteration and the degree of
node 𝑣 , respectively. The process reaches a stationary state when
|𝑝𝑟 (𝑢) − 𝑝𝑟−1 (𝑢) | is smaller than a threshold 𝜖 for all nodes 𝑢.

The PageRank problem, denoted as PR, is to compute, given a
graph 𝐺 and a threshold 𝜖 , the PageRank vector 𝑝𝑟 .

PR is unlabeled, i.e., labels have no impact on its query answer.
It is local since the PageRank score of each node relies only on the
scores and degrees of its neighbors.

As shown in [47], GraphChi can efficiently handle PR.
As a proof of Theorem 1 for PR, we adapt a conventional algo-

rithm PRA [62] for PR to the contraction hierarchy H .
4.1.1 Contraction for PR. The shared synopsis 𝑆𝑖 suffices for us
to answer PR queries. Indeed, for each subgraph 𝐻 contracted to a
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supernode 𝑣𝐻 in𝐺𝑖 , we can check the existence of an edge in 𝐻 by
using synopsis 𝑆𝑖 (𝑣𝐻 ) and 𝑓 𝑖

𝑅
that records only nodes in 𝐻 .

4.1.2 PageRank algorithm. Below we first review PRA [62]. We
then adapt the algorithm to the hierarchy H , referred to as PRAh.
PRA. Given a graph 𝐺 and a threshold 𝜖 , PRA iteratively computes
the PageRank vector 𝑝𝑟 . It initializes 𝑝𝑟0 (𝑢) = 1/|𝑉 | for all nodes
𝑢, and updates 𝑝𝑟 𝑖 (𝑢) by its neighbors in each iteration. PRA ter-
minates as soon as |𝑝𝑟 𝑖+1 (𝑢) − 𝑝𝑟 𝑖 (𝑢) | < 𝜖 for all nodes 𝑢.
Algorithm PRAh. PRAh is the same as PRA except minor adapta-
tions to deal with supernodes in hierarchy H . A node 𝑣 is called
converged if |𝑝𝑟𝑟 (𝑣) − 𝑝𝑟𝑟−1 (𝑣) | < 𝜖 in the 𝑟 -th iteration. Each
supernode 𝑣𝐻 is associated with a Boolean variable 𝑣𝐻 .cvg, initial-
ized as false, to indicate whether all nodes contracted to 𝑣𝐻 have
converged. As claimed in [12], the difference |𝑝𝑟 (𝑢) − 𝑝𝑟𝑟 (𝑢) | de-
creases monotonically; hence once a node 𝑢 is converged, it will
never become unconverged later on; it is the same for supernodes.
In the 𝑟 -th iteration, (1) if 𝑣𝐻 .cvg = true, we skip updating 𝑣𝐻 as a
whole; more specifically, for nodes 𝑢 contracted to 𝑣𝐻 , PRAh nei-
ther updates 𝑝𝑟𝑟 (𝑢) nor distributes 𝑝𝑟𝑟 (𝑢)/𝑑 (𝑢) to the neighbors
of 𝑢; (2) otherwise, we recursively decontract an edge that exists in
subgraph𝐻 contracted to 𝑣𝐻 to update level-0 nodes𝑢 with𝑢.cvg =

false; and (3) if |𝑝𝑟𝑟 (𝑢) − 𝑝𝑟𝑟−1 (𝑢) | < 𝜖 , PRAh sets 𝑢.cvg as true.
Moreover, PRAh updates 𝑣𝐻 .cvg to be true as long as 𝑣 .cvg = true
for all nodes 𝑣 contracted to 𝑣𝐻 in the next level.

Note that cases (1) and (3) are checked with 𝑓 𝑖
𝑅
and synopses

without decontraction, and case (2) needs to decontract only su-
peredges. In the entire process no contracted regular structures
need to be restored, i.e., no decontraction of supernodes is needed.
Example 3: Given the graph 𝐺 in Fig. 1(a) and 𝜖 = 10−4, PRAh
first initializes 𝑝𝑟0 (𝑣) = 1/27 and 𝑣𝐻 .cvg = false for all nodes
and supernodes. In the first few iterations, PRAh recursively de-
contracts superedges in 𝐻 contracted to supernodes 𝑣𝐻 to up-
date 𝑝𝑟 (𝑣) for nodes 𝑣 since 𝑣𝐻 .cvg = false. In the 5-th iteration,
|𝑝𝑟5 (𝑢1)−𝑝𝑟4 (𝑢1) | < 𝜖 ; hence PRAh sets𝑢1 .cvg = true. In the 26-th
iteration, PRAh sets 𝑢2 .cvg = true, which further updates 𝑠1 .cvg =

true since nodes 𝑢1, 𝑢2, 𝑢3 and 𝑢4 have converged. In the following
iterations, no update for 𝑠1 is needed. After 40 iterations, 𝑣𝐻 .cvg =

true for all supernodes, hence PRAh returns PageRank vector 𝑝𝑟 . 2
Analyses. PRAh is correct as it follows the same logic as PRA. It
improves the efficiency of PRA by skipping a supernode 𝑣𝐻 as a
whole as long as all nodes contracted to 𝑣𝐻 are converged. In
each step, at most one superedge is decontracted; no supernode is
decontracted. Even when restoring edges contracted to a supernode
at the top level, its size is at most 𝐵; hence a small buffer suffices.

4.2 Label Constrained Connectivity
We next study label-constrained connectivity [10, 74], which has
been used in regular path queries [9, 11] and program analysis [67].

In a graph 𝐺 , for a label set 𝐿 ⊂ Θ, a path 𝑝 = ⟨𝑣0, 𝑣1, . . . , 𝑣𝑙 ⟩ is
an 𝐿-path if 𝐿(𝑣𝑖 ) ∈ 𝐿 for all 0 ≤ 𝑖 ≤ 𝑙 , i.e., the label of each node 𝑣
on the path is contained by 𝐿. We say that two nodes 𝑢 and 𝑣 are
𝐿-connected if there exists an 𝐿-path from 𝑢 to 𝑣 .

The label-constrained connectivity problem, denoted by LCC, is
to determine, given a query 𝑄 consisting of a label set 𝐿 and a pair
(𝑢, 𝑣) of nodes in 𝐺 , whether 𝑢 and 𝑣 are 𝐿-connected.

Unlike PR, LCC is labeled, i.e., paths between 𝑢 and 𝑣 are con-
strained by labels in 𝐿. It is non-local, i.e., it has to traverse the entire
graph when answering a query. As acknowledged in [47], LCC is
inefficient for GraphChi since it requires to traverse the graph.

As a proof of Theorem 1 for LCC, we adapt a conventional
algorithm LCCA [10, 16] for LCC to the contraction hierarchyH ,
and show that the adapted algorithm works efficiently onH . Below
we first present synopses for LCC (Section 4.2.1), and then show
how to adapt LCCA to the hierarchy (Section 4.2.2).

4.2.1 Contraction for LCC. We first extend the notion of 𝐿-
connection to supernodes in the hierarchy. A node 𝑢 is 𝐿-connected
to a supernode 𝑣𝐻 if it is 𝐿-connected to all the nodes in 𝐺 that are
contracted to 𝑣𝐻 . Similarly, a supernode 𝑣𝐻1 is 𝐿-connected to 𝑣𝐻2
if all nodes contracted to 𝑣𝐻1 are 𝐿-connected to 𝑣𝐻2.

To reduce decontraction, we use synopsis 𝑆𝑖LCC (𝑣𝐻 ) of supern-
ode 𝑣𝐻 in the contracted graph 𝐺𝑖 for LCC. It extends the shared
synopsis 𝑆𝑖 (𝑣𝐻 ) (Section 3.2) with an extra tag labels that collects
the labels of all the nodes in 𝐺 that are contracted to 𝑣𝐻 , where
◦ at level 0, 𝑆0LCC (𝑣).labels = {𝐿(𝑣)};
◦ at level 𝑖 , 𝑆𝑖LCC (𝑣𝐻 ) .labels = ⋃

𝑓 𝑖
𝐶
(𝑣)=𝑣𝐻 𝑆𝑖−1LCC (𝑣).labels.

Example 4: In Fig. 1, 𝑆𝑖LCC (𝑣𝐻 ) extends 𝑆𝑖 (𝑣𝐻 ) as follows. (1) In𝐺0,
𝑆0LCC (𝑣).labels={𝐿(𝑣)} for all 𝑣 ∈ 𝑉 . (2) In𝐺1, 𝑆1LCC (𝑣).labels = {𝑢}
for 𝑣 ∈ {𝑠1, 𝑠3, 𝑠5, 𝑢14}; 𝑆1LCC (𝑣).labels={𝑘} for 𝑣 ∈ {𝑠2, 𝑠4, 𝑘11}; and
𝑆1LCC (𝑡1).labels = {𝑡} for 𝑣 ∈ {𝑡1, 𝑡2}. (3) In 𝐺2, 𝑆2LCC (𝑝1) .labels =
{𝑢}, 𝑆2LCC (𝑝2).labels = {𝑘,𝑢} and 𝑆2LCC (𝑝3).labels = {𝑘, 𝑡}. 2

4.2.2 LCC algorithm. Below we first review LCCA [10, 16]. We
then adapt the algorithm to hierarchy H , referred to as LCCAh.
LCCA. Given a graph 𝐺 and a query 𝑄 = (𝐿,𝑢, 𝑣), LCCA applies
breadth-first-search (BFS) starting from 𝑢. It maintains a set 𝑆 of
nodes that are 𝐿-connected from 𝑢, initialized as 𝑆 = {𝑢}. At each
step, LCCA selects a node 𝑠 ∈ 𝑆 , and expands the search from 𝑠 to
a newly visited node 𝑤 via edge (𝑠,𝑤); if 𝐿(𝑤) ∈ 𝐿, then node 𝑤
is 𝐿-connected from 𝑢 and is added to the set 𝑆 . It terminates with
true if 𝑣 is visited and added to 𝑆 , i.e., 𝑢 is 𝐿-connected to 𝑣 , and it
stops with false otherwise if the search cannot be further expanded.
Algorithm LCCAh. LCCAh adopts the same logic as LCCA. It
expands the search from 𝑣 ′

𝐻
, a supernode that is 𝐿-connected from

𝑢, to a newly visited supernode 𝑣𝐻 in graph 𝐺𝑖 at level 𝑖 if one of
the following conditions is satisfied: (1) 𝑣 ′

𝐻
is contracted into 𝑣𝐻

with 𝑆𝑖LCC (𝑣𝐻 ) .labels ⊆ 𝐿; (2) 𝑓 𝑖+1
𝐶

(𝑣 ′
𝐻
) = 𝑓 𝑖+1

𝐶
(𝑣𝐻 ) = 𝑣𝑆 and there

exists an 𝐿-path from 𝑣 ′
𝐻

to 𝑣𝐻 ; it checks such an 𝐿-path using
𝑆𝑖+1LCC (𝑣𝑆 ), e.g., when 𝑣 ′

𝐻
and 𝑣𝐻 are two leaves of a star, and the

labels of the central node and 𝑣𝐻 are covered by 𝐿; if 𝑣𝑆 is at the
top level, it decontracts 𝑣𝑆 , which is essentially edge decontraction;
or (3) there exists a supernode 𝑣 ′′

𝐻
such that (a) (𝑣 ′

𝐻
, 𝑣 ′′
𝐻
) ∈ 𝐺𝑖+1,

(b) the set 𝑆𝑖+1LCC (𝑣
′′
𝐻
).labels is not covered by 𝐿, (c) decontraction

of superedge (𝑣 ′
𝐻
, 𝑣 ′′
𝐻
) includes an edge with endpoint 𝑣𝐻 , and

(d) 𝑆𝑖LCC (𝑣𝐻 ) .labels ⊆ 𝐿. LCCAh stops when (1) it reaches 𝑣 or a
supernode 𝑣𝐻 that contracts 𝑣 , or (2) the search cannot be expanded.

Note that conditions (1) and (2) are checked by using 𝑓 𝑖
𝑅
and

synopses without decontraction of any regular structures, and con-
dition (3) needs to decontract only superedges. In the entire process
no decontraction of supernodes of regular structures is needed.
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Example 5: Given a query ({𝑢}, 𝑢8, 𝑢10) on hierarchyH of Fig. 1,
LCCAh starts from 𝐺2 at the top level: (1) initially, 𝑆 = {𝑢8}; (2) it
expands the search to 𝑝1 in 𝐺2 since 𝑆2LCC (𝑝1).labels = {𝑢} ⊆ 𝐿;
(3) it skips 𝑝3 as its labels contain no elements in 𝐿; (4) since the
labels of 𝑝2 are not covered by 𝐿, LCCAh decontracts superedge
(𝑝1, 𝑝2) and finds that𝑢14 in𝐺1 is 𝐿-connected from𝑢8; (5) it further
finds an 𝐿-path ⟨𝑢14, 𝑠5⟩ in 𝑝2 by checking synopses; (6) the search
terminates since𝑢10 is contracted to 𝑠5, and LCCAh returns true. 2
Analyses. One can verify the correctness of LCCAh by induction on
the depth of H as it follows the same logic as LCCA. It is efficient
since (a) it operates on contracted graphs, much smaller than the
original 𝐺 ; and (b) it checks synopses for 𝐿-paths, which reduce
expansion and validation costs, e.g., it may find a supernode 𝑣𝐻 as a
whole that is𝐿-connected from the source𝑢 if 𝑆𝑖LCC (𝑣𝐻 ) .labels ⊆ 𝐿.

4.3 Graph Pattern Matching
We next study subgraph isomorphism [24, 39], which is widely used
in graph queries [7, 34, 75, 76] and graph dependencies [31, 32].
Pattern matching. A graph pattern is a graph 𝑄 = (𝑉𝑄 , 𝐸𝑄 , 𝐿𝑄 ). A
match of pattern 𝑄 in graph 𝐺 is a subgraph 𝐺 ′ = (𝑉 ′, 𝐸 ′, 𝐿′) of 𝐺
that is isomorphic to𝑄 , i.e., there is a bijective function ℎ : 𝑉𝑄 → 𝑉 ′

such that (1) for each node 𝑢 ∈ 𝑉𝑄 , 𝐿𝑄 (𝑢) = 𝐿(ℎ(𝑢)); and (2) 𝑒 =

(𝑢,𝑢 ′) is an edge in𝑄 iff (ℎ(𝑢), ℎ(𝑢 ′)) is an edge in𝐺 and 𝐿𝑄 (𝑢 ′) =
𝐿(ℎ(𝑢 ′)). We denote by 𝑄 (𝐺) the set of all matches of 𝑄 in 𝐺 .

To simplify the discussion, we consider connected patterns 𝑄 .
This said, our algorithm can be adapted to disconnected ones.

The graph pattern matching problem, denoted by SubIso, is to
compute, given a pattern𝑄 and a graph𝐺 , the set𝑄 (𝐺) of matches.

Similar to LCC, SubIso is labeled. In contrast to LCC, SubIso is
local. Denote by𝑑𝑄 the diameter of𝑄 , i.e., themaximum shortest dis-
tance between any two nodes in𝑄 ; then any 𝑣1 and 𝑣2 in a match𝐺 ′

of𝑄 in𝐺 are within 𝑑𝑄 hops. GraphChi cannot handle SubIsowell.
The graph pattern matching problem is known NP-complete (cf.

[35]). We adapt a conventional algorithm VF2 [24] for SubIso to
the contraction hierarchyH . Other algorithms, e.g., TurboIso [39]
with indices, can also be adapted to the contraction hierarchy.
4.3.1 Contraction for SubIso. Observe that if a node 𝑣 in graph 𝐺
matches a node𝑢 in pattern𝑄 , then the labels of 𝑣 ’s neighbors must
cover the labels of 𝑢’s neighbors. The synopsis 𝑆𝑖SubIso (𝑣𝐻 ) extends
LCC synopsis 𝑆𝑖LCC (𝑣𝐻 ) with an extra tag nlabels that collects the
labels of the neighbors of the nodes contracted to 𝑣𝐻 , where
◦ at level 0, 𝑆0SubIso (𝑣).nlabels = {𝐿(𝑣 ′) | (𝑣, 𝑣 ′) ∈ 𝐸};
◦ at level 𝑖 , 𝑆𝑖SubIso (𝑣𝐻 ) .nlabels = ⋃

𝑓 𝑖
𝐶
(𝑣)=𝑣𝐻 𝑆𝑖−1SubIso (𝑣).nlabels.

Example 6: Consider H of Fig. 1. (1) In 𝐺0, 𝑆0SubIso (𝑢1) .nlabels =
{𝑢}, 𝑆0SubIso (𝑢2) .nlabels = {𝑢, 𝑘, 𝑡}, 𝑆0SubIso (𝑘1).nlabels = {𝑢, 𝑘};
similarly for other nodes. (2) In 𝐺1, 𝑆1SubIso (𝑠1).nlabels = {𝑢, 𝑘, 𝑡};
the same for 𝑠2, 𝑡1, 𝑡2 and 𝑢14; 𝑆1SubIso (𝑠3) .nlabels = {𝑢, 𝑘}; the
same for 𝑠4 and 𝑠5; and 𝑆1SubIso (𝑘11).nlabels = {𝑢}. (3) In 𝐺2,
𝑆2SubIso (𝑝1) = {𝑢, 𝑘, 𝑡} = 𝑆2SubIso (𝑝2) = 𝑆2SubIso (𝑝3) = {𝑢, 𝑘, 𝑡}. 2

4.3.2 SubIso algorithm. Below we first review VF2 [24]. We then
adapt the algorithm to the hierarchy H , referred to as SubAh.
VF2. Given a graph 𝐺 and a pattern 𝑄 , algorithm VF2 computes

𝑄 (𝐺) by backtracking. It expands a partial mapping, denoted as
𝑠 and initialized as ∅, by iteratively adding node pairs to obtain
an isomorphism between pattern 𝑄 and a subgraph 𝐺 ′ of 𝐺 . Node
pairs, maintained in a set 𝑃 , are identified by checking (a) syntactic
feasibility that depends only on the structure of the graphs, and (b)
semantic feasibility that depends on labels. VF2 (1) backtracks if 𝑃 =

∅, i.e., no node pairs can be added to 𝑠 to obtain a complete mapping,
or (2) branches from each node pair in 𝑃 to expand 𝑠 . It expands
𝑄 (𝐺) with valid complete mappings identified in the process.

Algorithm SubAh. SubAh adopts the same logic as VF2 except the
following minor adaptions. (1) It adds a node pair (𝑢, 𝑣𝐻 ) to 𝑃 if (a)
𝐿𝑄 (𝑢) ∈ 𝑆𝑖SubIso (𝑣𝐻 ).labels; (b) 𝐿𝑄 (𝑢 ′) ∈ 𝑆𝑖SubIso (𝑣𝐻 ).nlabels for
all neighbors 𝑢 ′ of 𝑢 in 𝑄 ; and (c) for each (𝑢 ′, 𝑣 ′) ∈ 𝑠 such that
(𝑢,𝑢 ′) ∈ 𝐸𝑄 , 𝑣𝐻 either contains 𝑣 ′ or connects to some supernode
containing 𝑣 ′. (2) To branch from a node pair (𝑢, 𝑣𝐻 ) in 𝑃 to expand
𝑠 , SubAh recursively replaces (𝑢, 𝑣𝐻 ) by (𝑢, 𝑣 ′

𝐻
), where 𝑣 ′

𝐻
is a

supernode in the next level contracted to 𝑣𝐻 and can match 𝑢 by
satisfying condition (1), using nodes in 𝑓 𝑖

𝑅
and synopsis 𝑆𝑖SubIso.

Conditions (1a) and (1b) are checked with synopsis 𝑆𝑖SubIso and 𝑓 𝑖
𝑅
;

and condition (1c) is checked by superedge decontraction and 𝑓 𝑖
𝑅
.

In this way it adds node pairs (𝑢, 𝑣) for level-0 nodes 𝑣 in 𝐺 .
In the entire process, no contracted subgraphs are restored.

Example 7: Query 𝑄 in Fig. 1(f) is to find potential friendships
based on retweets, keywords and common friends. Nodes 𝑢, 𝑢 ′
and 𝑢 ′′ have label 𝑢. Given 𝑄 , SubAh starts from 𝐺2 at the top
level: (1) it chooses 𝑡 as the start node, to which only 𝑝3 can
match, hence it adds (𝑡, 𝑝3) to 𝑃 ; (2) to branch from (𝑡, 𝑝3), SubAh
replaces (𝑡, 𝑝3) with (𝑡, 𝑡1) and (𝑡, 𝑡2); (3) for (𝑡, 𝑡1), SubAh next
chooses 𝑘 as the node to match and adds (𝑘, 𝑝3) and (𝑘, 𝑝2) to 𝑃 ;
(4) SubAh then replaces (𝑘, 𝑝3) by (𝑘, 𝑘5) and skips (𝑘, 𝑝2) since
decontraction of superedge (𝑝3, 𝑝2) cannot find a node contracted
to 𝑝2 having an edge with 𝑡1; (5) in a similar manner, it matches
𝑡, 𝑘, 𝑡 ′, 𝑢,𝑢 ′, 𝑢 ′′ with 𝑡1, 𝑘5, 𝑡2, 𝑢2, 𝑢14, 𝑢1, respectively; (6) for (𝑡, 𝑡2),
it matches 𝑡, 𝑘, 𝑡 ′, 𝑢,𝑢 ′, 𝑢 ′′ with 𝑡2, 𝑘5, 𝑡1, 𝑢14, 𝑢2, 𝑢1, respectively. 2
Analyses. SubAh is correct since it follows the same logic as VF2
excepts it adopts pruning strategies. While the two have the same
worst-case complexity, by checking synopses, SubAh can reduce
expansion and validation costs as well as skipping supernodes as a
whole. In each step, at most one superedge is decontracted.

4.4 CC, CD and RPQ
We next study connected component (CC), clique decision (CD) and
regular path query (RPQ). For the lack of space, below we present
only main ideas of adapting algorithms to the scheme for the three.

CC. The connected component problem (CC) [25, 71] is to compute
the set of pairs (𝑠, 𝑛) for a given graph 𝐺 , where (𝑠, 𝑛) indicates
that there are 𝑛 connected components in 𝐺 , each consisting of 𝑠
nodes. CC is non-local and non-labeled. It is widely used in pattern
recognition [40, 43], graph partition [72] and random walk [41].

Observe that each subgraph 𝐻 contracted to a supernode 𝑣𝐻 is
connected, no matter whether 𝐻 is a regular structure (by topology
contraction) or a set of edges (by edge contraction; see Section 2).
Based on this, we adapt the algorithm of [71] forCC to the hierarchy.
The synopses defined in Section 3.2 suffice for us to compute CC,
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Algorithm IncHCon
Input: A contraction hierarchy H consisting of 𝑘 levels ⟨𝑓 𝑖

𝐶
, S𝑖 , 𝑓 𝑖

𝐷
, 𝑓 𝑖

𝑅
⟩ and

𝑘 contracted graphs𝐺𝑖 of a graph𝐺 , and updates Δ𝐺 to𝐺 .
Output: New contracted graphs𝐺𝑖 ⊕ Δ𝐺𝑖 at each level.
1. 𝑖 := 0; Δ𝐺𝑖 := Δ𝐺 ;𝑇 (𝐺) := ordered set of regular structures of𝐺 ;
2. while 𝑖 < 𝑘 and Δ𝐺𝑖 ≠ ∅ do
3. 𝑉𝑠 := ∅; Δ𝐺′ := ∅;
4. group edges of updates in Δ𝐺𝑖 ; reduce Δ𝐺𝑖 ;
5. for each group of edges Δ𝐸 ⊂ Δ𝐺𝑖 with a representative (𝑢, 𝑣) do
6. 𝑣𝐻 := 𝑓 𝑖+1

𝐶
(𝑢) ; /*𝑓 𝑖+1

𝐶
(𝑢) = 𝑓 𝑖+1

𝐶
(𝑣))*/

7. recover subgraph 𝐻 contracted to supernode 𝑣𝐻 ;
8. IncCR (𝐻,Δ𝐸,𝑇 (𝐺), 𝑣𝐻 ,𝐺𝑖+1,𝑉𝑠 ,Δ𝐺′);
9. contract (𝑉𝑠 ,𝐺𝑖 ,𝑇 (𝐺),Δ𝐺′); Δ𝐺𝑖+1 = Δ𝐺′; 𝑖 := 𝑖 + 1;
10. return𝐺𝑖 ⊕ Δ𝐺𝑖 ;

Procedure IncCR
Input: a subgraph 𝐻 , updates Δ𝐸, ordered regular structures𝑇 (𝐺) , a supernode

𝑣𝐻 , a contracted graph𝐺𝑖+1, singleton vertex set𝑉𝑠 and updates Δ𝐺′.
Output: Updated𝐺𝑖+1.
1. 𝐻 := 𝐻 ⊕ Δ𝐸;
2. if 𝐻 is regular and 𝐻 can fit in buffer size
3. then write the buffered edges to disk;
4. else contract regular structures in 𝐻 , and update 𝑓 𝑖+1

𝐷
;

5. add singleton nodes to𝑉𝑠 , and collect updated superedges in Δ𝐺′;

Figure 4: Algorithm IncHCon

and we need to decontract neither supernodes nor superedges.

CD. A clique in a graph𝐺 is a subgraph𝐶 in which there are edges
between any two nodes. It is a 𝑡-clique if the number of nodes in 𝐶
is 𝑡 (i.e., |𝑉 (𝐶) | = 𝑡 ). The clique decision problem (CD) [17, 45] is to
find whether there exists a 𝑡-clique in𝐺 for a given natural number
𝑡 . CD is non-labeled and local. It finds applications in community
search [63], team formation [48] and anomaly detection [13, 53].

We adapt the algorithm of [45] for CD to the hierarchy, using
(1) cliques in 𝐺 contracted into supernodes in 𝐺1 to find an initial
maximum clique, and (2) the degree of node 𝑣 as an upper bound
of the maximum clique containing 𝑣 , for pruning. The algorithm
decontracts superedges only, but decontracts no supernodes.

RPQ. Consider a regular expression 𝑟 . On a graph 𝐺 with edge
labels, a regular path 𝑟 specifies a set of paths such that the labels
on the edges of each path form a word in the language of 𝑟 . A
regular path query 𝑟 (RPQ) [58] is to return all node pairs (𝑢, 𝑣)
such that there exists such a matching path from 𝑢 to 𝑣 .

RPQ is non-local and is labeled (it imposes constraints on edge
labels). It is of vital importance in semantic web [37, 64], biological
networks [51] and social network analysis [68].

We adapt the algorithm of [78] for RPQ to the hierarchy, by
defining synopses in terms of (1) the labels of edges contracted into
supernodes, and (2) the labels of edges that are adjacent to some
nodes contracted into the supernodes. The algorithm decontracts
superedges only, but decontracts no supernodes.

5 INCREMENTAL CONTRACTION
Real life graphs are often dynamic. In light of this, we next develop
an incremental algorithm, denoted by IncHCon, to maintain the
contraction hierarchy H in response to updates Δ𝐺 to graph 𝐺 .
Hierarchy H is built once offline by algorithm HCon (Section 3.1).
It is then incrementally maintained by IncHCon online.

Problem. We consider batch updates Δ𝐺 , which are sequences of
edge insertions, deletions and label updates. Vertex updates are a
dual of edge updates [46] and can be processed accordingly.

Given contraction hierarchy H of 𝑘 levels ⟨𝑓 1
𝐶
,S1, 𝑓 1

𝐷
, 𝑓 1
𝑅
⟩,

. . . , ⟨𝑓 𝑘
𝐶
,S𝑘 , 𝑓 𝑘

𝐷
, 𝑓 𝑘
𝑅
⟩ with contracted graphs 𝐺1, . . . ,𝐺𝑘 , and batch

updates Δ𝐺 , the incremental hierarchical contraction problem, de-
noted as IHP, is to compute (a) changesΔ𝐺𝑖 to𝐺𝑖 at each level 𝑖 such
that𝐺1 ⊕Δ𝐺1 = 𝑓 1

𝐶
(𝐺 ⊕Δ𝐺) and𝐺𝑖 ⊕Δ𝐺𝑖 = 𝑓 𝑖

𝐶
(𝐺𝑖−1 ⊕Δ𝐺𝑖−1), i.e.,

to get the contracted graph at level 𝑖 of the updated 𝐺𝑖−1 ⊕ Δ𝐺𝑖−1,
where𝐺𝑖 ⊕Δ𝐺𝑖 applies Δ𝐺𝑖 to𝐺𝑖 ; (b) the updated synopses S𝑖 ; and
(c) functions 𝑓 𝑖

𝐷
and 𝑓 𝑖

𝑅
of the new contracted 𝑓 𝑖

𝐶
(𝐺𝑖−1 ⊕ Δ𝐺𝑖−1).

Criterion. Following [66], we measure the complexity of an incre-
mental hierarchical contraction algorithm in terms of the size of the
affected area, denoted by AFF. Here AFF includes (a) the changes
Δ𝐺 to graph𝐺 , i.e., the changed region of the input, (b) the changes
Δ𝐺𝑖 to each level in the contraction hierarchy, i.e., changes to the
output H , and (c) edges with at least one endpoint in (a) or (b).

An incremental algorithm is said to be bounded if its complexity
is determined by |AFF| (the three cases above), not by size |𝐺 | of the
entire graph𝐺 . An incremental problem is bounded if there exists a
bounded incremental algorithm for it, and is unbounded otherwise.

Intuitively, Δ𝐺 is typically small in practice. When Δ𝐺 is small,
so is Δ𝐺𝑖 for 𝐺𝑖 at each level. Hence when Δ𝐺 is small, a bounded
incremental algorithm is often far more efficient than a batch algo-
rithm that recomputes each 𝐺𝑖 of H starting from scratch, since
the cost of the latter depends on the size of possibly big 𝐺 .
Challenges. Problem IHP is nontrivial. (1) Regular structures are
fragile. For instance, when inserting an edge between two leaves
of a star 𝐻 , 𝐻 is no longer a star, and its nodes may need to be
contracted into other regular structures. (2) When a contracted
graph𝐺𝑖 is changed, so are its synopses and decontraction. (3) Edge
insertions may make some contracted parts exceed the buffer size.
(4) Maintenance of the hierarchy H may incur heavy I/O cost.
Main result. Despite the challenges, we show that bounded incre-
mental hierarchical contraction is within the reach in practice.

Theorem 2: Problem IHP is bounded for PR, LCC, SubIso, CC, CD
and RPQ ; it takes at most 𝑂 (𝑘 |AFF|2) time. Here 𝑘 is the depth of
hierarchy H , which is usually a small constant 2–4 in practice. 2

We give a constructive proof of Theorem 2, consisting of two
parts: (1) the maintenance of the contracted graph 𝐺𝑖+1 and its
associated functions 𝑓 𝑖+1

𝐷
and 𝑓 𝑖+1

𝑅
at each level 𝑖+1 in the hierarchy

H in response to updates Δ𝐺𝑖 to 𝐺𝑖 ; and (2) the maintenance of
the synopses of affected supernodes in each 𝐺𝑖+1.

(1) Incremental algorithm. We provide an incremental algorithm,
denoted by IncHCon, in Fig. 4. Since edge labels have no impact on
the contraction algorithm, IncHCon deals with edge insertions and
deletions only. In each iteration, IncHCon incrementally maintains
the contracted graph 𝐺𝑖+1 in response to Δ𝐺𝑖 to 𝐺𝑖 (lines 2-9).
Initialized as Δ𝐺0 = Δ𝐺 (line 1), Δ𝐺𝑖 is obtained in each iteration
(line 9). It has three steps as follows. To simplify the discussion, we
focus on how to update 𝐺𝑖+1 with Δ𝐺𝑖 ; the maintenance of 𝑓 𝑖+1

𝑅

and 𝑓 𝑖+1
𝐷

for supernodes are similar, as a byproduct.
(a) Preprocessing. IncHCon recalls the order 𝑇 (𝐺) on regular struc-

Session 24: Potpourri SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1734



tures (line 1), which is decided by the type of𝐺 , not by𝐺 itself (see
Section 3.1). The pre-computed 𝑇 (𝐺) is used when a structure is
no longer regular due to updates or when it exceeds the buffer size.

In each iteration, IncHCon identifies an initial area affected by
update Δ𝐺𝑖 , maintains it in a set𝑉𝑠 , and tracks the changes to𝐺𝑖+1
in Δ𝐺 ′ for the next iteration (line 3). It then groups updates in Δ𝐺𝑖

such that two updates of edges (𝑢1, 𝑣1) and (𝑢2, 𝑣2) are in the same
group if 𝑓 𝑖+1

𝐶
(𝑢1) = 𝑓 𝑖+1

𝐶
(𝑢2) and 𝑓 𝑖+1

𝐶
(𝑣1) = 𝑓 𝑖+1

𝐶
(𝑣2) (line 4). Each

group, denoted by Δ𝐸, is represented by an arbitrary (𝑢, 𝑣) in Δ𝐸.
By grouping, updates to a supernode or a superedge are aggregated,
to be carried out by few sequential disk accesses, to minimize the
I/O cost. IncHCon next removes “unaffected” updates from Δ𝐺𝑖

that have no impact on 𝐺𝑖+1 (line 4), i.e., groups with representa-
tive (𝑢, 𝑣) having 𝑓 𝑖+1

𝐶
(𝑢) ≠ 𝑓 𝑖+1

𝐶
(𝑣). These updates are made to

superedges of𝐺𝑖+1 that are recorded in 𝑓 𝑖+1
𝐷

and written to the disk.
(b) Updating. Algorithm IncHCon then updates 𝐺𝑖+1 (lines 6-9).
For each group Δ𝐸 of edges with representative (𝑢, 𝑣) that have
𝑓 𝑖+1
𝐶

(𝑢) = 𝑓 𝑖+1
𝐶

(𝑣) = 𝑣𝐻 (line 6), IncHCon recovers the subgraph 𝐻

contracted to 𝑣𝐻 either by synopsis or by edge decontractions when
𝑣𝐻 is at the top level (line 7). It then invokes procedure IncCR to
update 𝐻 by Δ𝐸 (line 8). Now some nodes may become “singletons”
when a regular structure is decomposed by the updates, e.g., leaves
of a star. It collects such singleton nodes in the set 𝑉𝑠 .

More specifically, procedure IncCR applies updates in Δ𝐸 to 𝐻
(line 1). When 𝐻 is still regular, e.g., adding an edge into a diamond
makes it a clique, if the updated 𝐻 can fit in the buffer, updating
𝐻 is done by writing the buffered edges to disk (line 2-3). If 𝐻 is
non-regular, IncCR contracts regular structures in 𝐻 as in HCon
(line 4). Here updated superedges include those inside 𝐻 and those
adjacent to 𝑣𝐻 in 𝐺𝑖+1. All singleton nodes are added to 𝑉𝑠 , and
those added/removed superedges are collected in Δ𝐺 ′ (line 5).
(c) Contraction. Finally, IncHCon processes nodes in 𝑉𝑠 (line 10). It
(a) iteratively loads into memory the nodes in𝑉𝑠 and their adjacent
edges, and contracts regular structures following the order 𝑇 (𝐺),
or (b) leaves nodes 𝑣 as singletons, i.e., 𝑓 𝑖+1

𝐶
(𝑣) = 𝑣 . Moreover, it

updates decontraction 𝑓 𝑖+1
𝐷

and writes the buffered edges to disk.

Example 8: For an edge (𝑢, 𝑣), denote by (𝑢, 𝑣)+ and (𝑢, 𝑣)− up-
dates of inserting (𝑢, 𝑣) and deleting (𝑢, 𝑣), respectively. Consider
updating graph 𝐺0 of Fig. 1(a) with Δ𝐺 = {(𝑘11, 𝑢9)+, (𝑘8, 𝑘9)−,
(𝑘6, 𝑘7)−, (𝑘1, 𝑘2)−, (𝑘2, 𝑘3)−}. IncHCon works as follows.

In the preprocessing phase, IncHCon adopts 𝑇 (𝐺) = [clique, di-
amond, butterfly, star] since 𝐺 is a social network. It then groups
updates in Δ𝐺 into three groups: Δ𝐸1 = {(𝑘11, 𝑢9)+}, Δ𝐸2 =

{(𝑘8, 𝑘9)−, (𝑘6, 𝑘7)−} and Δ𝐸3 = {(𝑘1, 𝑘2)−, (𝑘2, 𝑘3)−}. Now Δ𝐸1
is reduced and written to the disk to update 𝑓 1

𝐷
(𝑘11, 𝑠5).

In the first iteration (to maintain 𝐺1 in response to Δ𝐺 to 𝐺),
(1) the updating step first applies Δ𝐸2 to the butterfly contracted
to 𝑠4, denoted as 𝐻 . Then 𝐻 becomes a star, which is still regular;
(2) it then applies Δ𝐸3 to the clique contracted to 𝑠2, denoted as
𝐻 ′. Now 𝐻 ′ becomes non-regular. It is contracted into a clique
consisting of nodes {𝑘1, 𝑘3, 𝑘4, 𝑘5}, along with a singleton node
𝑘2. A new superedge (𝑘2, 𝑠2) is built and the original superedge
(𝑠2, 𝑠3) is replaced by (𝑠2, 𝑠3) and (𝑠3, 𝑘2). Such updates are written
to the disk. Moreover, 𝑉𝑠 = {𝑘2} and Δ𝐺1 = {(𝑘2, 𝑠2)+, (𝑠3, 𝑘2)+}.
No structures can be contracted from the nodes in 𝑉𝑠 .

In the second iteration (for maintaining 𝐺2 in response to Δ𝐺1
to𝐺1), all updates in Δ𝐺1 are reduced in preprocessing. As a conse-
quence, no updating and contraction are needed. 2

Analyses. Recall the definition of AFF earlier in this section. Algo-
rithm IncHCon takes 𝑂 ( |AFF|2) time. Indeed, (a) its preprocessing
step is in 𝑂 ( |AFF|) time, since each iteration is in 𝑂 ( |Δ𝐺𝑖 |) time;
(b) the updating step takes 𝑂 ( |AFF|) time, since each subgraph 𝐻

has a bounded size; and (c) the cost of the step for contracting 𝑉𝑠 is
in𝑂 ( |AFF|2) time, since (1) this step considers only nodes in𝑉𝑠 and
their adjacent edges, and the total size is bounded by |AFF|; and
(2) the dominating part in this step is contracting cliques and stars;
one can verify that it takes 𝑂 ( |AFF|2) time along the same lines as
the analysis of the contraction algorithm HCon (Section 3.1).

The algorithm is (a) bounded, since its cost is determined by
|AFF| alone [66], and (b) local [27], i.e., the changes are confined to
affected supernodes and their neighbors in each𝐺𝑖 . The contracted
graphs 𝐺𝑖 incrementally maintained by IncHCon may differ from
those of HCon since singleton nodes in 𝑉𝑠 may be contracted in
different orders. Nonetheless, we find that the differences are small.
Moreover, such𝐺𝑖 ’s are compact and cannot be further contracted.

(2) Synopses maintenance. We next show that for LCC, SubIso,
PR, CC, CD and RPQ , (a) at most 𝑂 (𝑘 |AFF|) supernodes have
affected synopses, where 𝑘 is the depth of hierarchyH , and (b) the
synopsis for each supernode can be updated in𝑂 ( |AFF|) time. These
also apply to edge label updates, which affect only supernodes that
contain or are adjacent to the updated edges. Thus incremental
synopses maintenance for each of these is in 𝑂 (𝑘 |AFF|2) time.

To see these, consider a supernode 𝑣𝐻 in𝐺𝑖 . The shared synopsis
𝑆𝑖 (𝑣𝐻 ) stores the type, key feature and total number of level-0 nodes
contracted to 𝑣𝐻 (Section 3.2). One can verify that the number of
supernodes whose synopses are affected is at most 𝑘 |AFF| (as a
node in AFF can influence at most 𝑘 supernodes at higher levels).
Moreover, 𝑆𝑖 (𝑣𝐻 ) is confined to 𝑣𝐻 , and can be updated in𝑂 (1) time.
Thus themaintenance of shared synopses 𝑆 takes at most𝑂 (𝑘 |AFF|)
time. In addition, the maintenance of extended synopses for each of
the six query classes takes at most 𝑂 (𝑘 |AFF|2) time. For example,
for LCC, 𝑆𝑖LCC (𝑣𝐻 ) extends 𝑆𝑖 (𝑣𝐻 ) with 𝑆𝑖LCC (𝑣𝐻 ) .labels; note that
𝑆𝑖LCC (𝑣𝐻 ) .labels is updated in a similar manner as 𝑆𝑖LCC (𝑣𝐻 ).size;
hence it takes at most 𝑂 (𝑘 |AFF|) time to maintain 𝑆LCC.

Example 9: Continuing with Example 8, we show how to maintain
𝑆𝑖SubIso (𝑣𝐻 ) .nlabels for supernodes 𝑣𝐻 in𝐺𝑖 ; 𝑆𝑖 (𝑣𝐻 ), 𝑆𝑖LCC (𝑣𝐻 ) and
𝑆𝑖PR (𝑣𝐻 ) are simpler. (1) For (unaffected) Δ𝐸1, 𝑆1SubIso (𝑣𝐻 ) .nlabels
remains the same for all 𝑣𝐻 in 𝐺1. (2) By updates Δ𝐸2, 𝑠4 becomes
a star, while 𝑆1SubIso (𝑠4).nlabels remains the same. (3) Updates
Δ𝐸3 make 𝑠2 a 4-clique; 𝑆1SubIso (𝑠2).nlabels and 𝑆

1
SubIso (𝑠3) .nlabels

remain the same while 𝑆1SubIso (𝑘2) .nlabels = {𝑢, 𝑘}. Update of
𝑆1SubIso (𝑘2).nlabels has no impact on 𝑆2SubIso (𝑝3).nlabels. 2

6 EXPERIMENTAL STUDY
Using real-life and synthetic graphs, we experimentally evaluated
(1) the effectiveness of the hierarchical contraction scheme, (2) the
impact of contracting each regular structure, (3) the space cost of
the hierarchy, (4) the efficiency of the contraction and incremental
contraction algorithms, and (5) the scalability of our scheme.
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Figure 5: Performance evaluation

Experiment setting. We start with the setting.
(1) Graphs. We used 7 real-life graphs: (a) DBpedia [50], a knowl-
edge base with 4.9M entities and 54M relationships, (b) Traffic [1],
a road network with 23M nodes and 29M edges, (c) Twitter [59], a
social network with 42M users and 1.5B links, (d) Friendster [3],
a social network with 65M users and 1.8B links, (e) UKWeb [2], a
Web graph with 106M nodes and 3.7B edges, (f) Hollywood [15],
a collaboration network with 1.1M nodes and 56M edges, and (g)
Patent [52], a citation network with 3.8M nodes and 16.5M edges.

Here DBpedia (resp. Traffic, Hollywood, Patent) is the largest
knowledge base (resp. road, collaboration and citation network)
that we could find. We set memory limit𝑀 as 200MB for these four
(100MB for Patent), so that the graphs do not fit in the memory.
For the other three graphs, we set𝑀 as 4GB. We set buffer size 𝐵 as
100MB. To accurately evaluate the impact of𝑀 , we limited caching
space used by the operating system within 5% of memory𝑀 .

We also generated synthetic graphs with up to 500 million nodes
and 6 billion edges, to test the scalability of our scheme.
Updates. We randomly generated updates Δ𝐺 controlled by size
|Δ𝐺 |. We keep the ratio of edge insertions to deletions as 1 unless
stated otherwise, i.e., the sizes of updated graphs remain unchanged.
(2) Implementation. We implemented the following, all in C++. (1)
Algorithms PRAh (Section 4.1.2), LCCAh (Section 4.2.2), SubAh
(Section 4.3.2), CCAh for CC, CDAh for CD, and RPQAh for
RPQ (Section 4.4). (2) Our contraction algorithm HCon and
incremental IncHCon. (3) Baselines PRA, LCCA, VF2, CCA, CDA
and RPQA that run on competitor systems.

We tested another 7 systems as baselines: (a) GraphChi [47]
and Mosaic [56], two disk-based single-machine graph systems
(see Section 1); (b) COST [60], another disk-based single-thread
system; and (c) four parallel systems: graph-centric GRAPE [4, 33]
and vertex-centric PowerGraph [36], Gemini [80] and LA3 [6]. All
the parallel systems are in-memory solutions.

On a single machine with 16 cores, we implement the query
answering algorithms to explore on-chip parallelism as follows: (1)
we edge-cut [69] a graph into fragments, such that each core can
operate on its designated fragment in parallel; and (2) the cores
synchronize and communicate with each other via shared memory.

The hierarchyH is stored as follows: (1) contracted graphs 𝐺𝑖

are maintained by adjacency lists; (2) functions 𝑓 𝑖
𝐶
and 𝑓 𝑖

𝑅
are main-

tained by hashmaps; (3) decontraction functions 𝑓 𝑖
𝐷
are stored as

lists such that the edges in the same contracted subgraph are stored
sequentially; and (4) synopses are stored as user-defined structures.
(3) Environment. Experiments were conducted on a HPC cluster,
with machines powered by Xeon 2.5GHz, 64GB RAM and 10Gbps
NIC. We tested HCon, IncHCon, GraphChi,Mosaic and COST on
a single machine with 𝑐 = 16 cores, while parallel systems used
up to 𝑛 = 6 machines (96 cores). Note that COST can use only one
core since it is a single-thread system. We used SSD to store data.
Each experiment was run 5 times, and the average is reported here.

Experimental results. We now report our findings.

Exp-1: Effectiveness. We first tested the performance of query an-
swering with the contraction scheme. As remarked earlier, none of
the seven graphs fits into memory of size𝑀 above. We fix 𝑡𝑝 = 0.7
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Graph LCC PR SubIso
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

DBpedia 47.1 - - 4.5 - - 20.7 - -
Traffic 26.2 9.9 - 2.5 1.7 - 13.5 3.9 -
Twitter 30.8 19.3 8.0 4.6 2.5 2.1 10.7 8.1 2.3
Friendster 22.4 3.7 4.5 3.6 1.0 0.8 21.5 6.7 5.1
UKWeb 34.1 20.3 2.7 4.6 1.5 0.9 30.4 12.0 6.6
Hollywood 31.5 16.3 8.2 4.9 2.1 0.6 19.1 15.2 10.3
Patent 51.3 7.2 4.9 7.1 1.5 1.0 39.2 8.1 5.2

Table 3: Slowdown(%) by disabling certain regular structures

and show that a single machine is able to compute exact answers
with a hierarchy of depth of 2-4. In contrast, when 𝑛 is small, paral-
lel systems ran into memory overflow when querying some graphs,
e.g., as shown in Table 4, GRAPE needs 283G memory to load
UKWeb alone (with labels), which do not fit in four machines.
Label-constrained connectivity. Figures 5(a)–5(b) report runtime
of LCCAh on the contraction hierarchy using a single machine
compared with baselines, by varying 𝑛 from 1 to 6. As shown there,
on average, (1) LCCAh is 1083.5, 24.3 and 7.3 times faster than
GraphChi, Mosaic and COST on Traffic and Twitter, respectively.
(2) Single-machine LCCAh is even faster than parallel PowerGraph,
GRAPE, Gemini and LA3 that are equipped with 6, 2, 1 and 6
machines, respectively. It is on average 132.1 times faster than
PowerGraph when 𝑛 varies from 1 to 6, respectively.

Figure 5(h) reports the I/O cost for superedge/node decontraction
of LCCAh, compared with the I/O cost of COST, GraphChi and
Mosaic. On average, LCCAh takes only 2.3%, 71.5% and 8.1% of the
I/O cost of GraphChi, COST andMosaic, respectively. We do not
compare the I/O cost of LCCAh with the communication cost of
parallel systems since the former is the amount of graph data read
into memory while the latter is the amount of intermediate data
transferred between machines, which are significantly different.

Intuitively, LCCAh is efficient since (a) it operates on smaller
contracted graphs; (b) it inherits graph-level optimization of LCCA;
and (c) it finds an 𝐿-connected supernode from source node as a
whole, and skips a supernode in the hierarchy without decontrac-
tion as long as its synopsis (encoding the label set of the nodes
contracted to the supernode) contains no label in the query.
PageRank. Figure 5(c) shows that on average, (1) PRAh is 5.3 and 6.8
times faster than GraphChi and COST on Friendster, respectively.
(2) It is 12.4% slower thanMosaic on Friendster, since PRAh has to
decontract superedges. (3) Parallel systems ran faster than PRAh
when using sufficient machines, since I/O dominates the cost of PR.
(4) As shown in Fig. 5(h), the I/O cost of PRAh is only 23.5% of that
of GraphChi, and is comparable to those of COST and Mosaic.
Subgraph isomorphism. As shown in Fig. 5(d), (1) SubAh beatsCOST
andMosaic by 14.4 and 4.8 times onHollywood. (2) Single-machine
SubAh is faster than GRAPE, PowerGraph, Gemini and LA3 when
the latter used 𝑛 = 1, 6, 3, 6 machines, respectively. GraphChi ran
out of memory or spends more than 2 hours, since it requires sub-
stantial graph traversal and can not adopt graph-level optimization.
SubAh does well by using label synopses to prune supernodes.
Connected component, clique decision and regular path query. We
find the following. (1) Figure 5(e) shows that on average, (a) CCAh
beats COST, GraphChi andMosaic by 26.4, 1716.8 and 217.0 times

Graph HCon GraphChi Mosaic COST PowerGraph GRAPE Gemini LA3

DBpedia 1.3G,159M 953M 979M 854M 5.3G 2.1G 6.1G 8.7G
Traffic 928M,152M 629M 831M 625M 3.1G 1.1G 4.9G 10.2G
Twitter 28.1G,2.98G 21G 27.4G 18.3G 126G 104G 72.1G 61.7G
Friendster 34.6G,3.89G 37G 39.1G 28.5G 148G 131G 90.7G 93.3G
UKWeb 60.5G,3.92G 62G 46G 51.3G 307G 283G 142.4G 221G
Hollywood 722M,185M 885M 801M 861M 3.4G 1.9G 5.2G 7.4G
Patent 285M,66M 254M 366M 237M 1.6G 0.7G 2.4G 4.7G

Table 4: Space cost of HCon and competitor systems

on UKWeb, respectively. (b) CCAh is 404.8, 1.4 and 8.1 times faster
than PowerGraph, Gemini and LA3 when they use 𝑛 = 6machines,
respectively, and it is faster than GRAPE with 𝑛 = 5. CCAh is
efficient since it only uses 𝐺𝑘 at the top of H . In addition, it
decontracts neither supernodes nor superedges, i.e., it incurs no I/O.
(2) As shown in Figure 5(f), CDAh is 12.9 times faster than COST
on UKWeb, by using synopses to find an initial maximum clique
that is near-optimal in size, while GraphChi,Mosaic, PowerGraph,
Gemini and LA3 ran out of memory for CD.
(3) As shown in Figure 5(g), RPQAh is 15.7, 17.3 and 1.8 times faster
than COST, GraphChi andMosaic on DBpedia, by using synopses
to prune supernodes. Moreover, RPQAh is faster than PowerGraph,
GRAPE and LA3 when they use 5, 1 and 1 machines, respectively.

These also show that to perform comparably with memory-based
approaches, our scheme could support query classes of different
types even when the memory is only 7.6% of the graph size. For PR,
LCC, SubIso,CC,CD andRPQ , it outperforms not only prior single-
machine solutions COST, GraphChi and Mosaic, in both runtime
and I/O cost, but also parallel systems that use more machines.

In principle, our hierarchical scheme is able to handle arbitrary
queries on a graph of an arbitrary size with a single machine (sub-
ject to constraints of the underlying operating system), i.e., there is
no lower bound for the main-memory capacity for the input graphs.
Nonetheless, when the memory is too small, I/O cost may substan-
tially increase. We experimentally find that when the memory is
3% of the graph size, the query evaluation efficiency of our scheme
is on average 9.1 times slower than memory-based system GRAPE
with 6 machines, except CC that basically does not decontract.

Exp-2: Impact of each structure. We next evaluated the impact
of contracting each regular structure. Based on Table 2, we took
contraction of the first 3 types of regular structures as the baseline,
and tested the impact of each component on query evaluation by
disabling it, using all the datasets. As shown in Table 3, the average
slowdown by disabling each of the first 3 structures is (a) 34.8%,
12.8% and 5.7% for LCC, (b) 4.6%, 1.7% and 1.1% for PR, and (c) 22.1%,
9.0% and 5.9% for SubIso, respectively. We can see that the impact
of each regular structure is consistent with the contraction order
𝑇 (𝐺) (Section 3.1). The results on CC, CD and RPQ are consistent.

We also studied the impact of the contraction order of Section 3.1.
We tested the impact of (a) RE, by reversing the order, and (b) EX,
by exchanging between different types of graphs, e.g., we used the
order for social networks to contract road networks, which may
not preserve the frequent regular structures of road networks. The
average slowdown of RE and EX is 5.6% and 18.4%, respectively.
These justify the contraction order proposed in Section 3.1.

Exp-3: Space. We tested space cost of our scheme by measuring
its disk and memory usage, including the cost of storing node and
edge labels. The contracted graphs𝐺1–𝐺𝑘−1 with their contraction
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schemes are stored in disk, and𝐺𝑘 at the top level resides inmemory.
We measured the disk usage of disk-based GraphChi,Mosaic and
COST, and thememory usage ofmemory-based ones, i.e., all parallel
systems. Table 4 shows the results in which the two numbers in the
column for HCon report its disk and memory usage, respectively.
As shown there, (1) HCon takes on average 22.8% more space than
GraphChi, COST andMosaic, while its query answering is much
faster as shown earlier. (2) PowerGraph, GRAPE, Gemini and LA3
take on average 3.4 times more space than HCon.

Exp-4: Efficiency of (incremental) contraction. We next eval-
uated the efficiency of HCon and IncHCon versus GraphChi and
Mosaic. Varying the size |Δ𝐺 | of updates from 5% of |𝐺 | up to 30%,
Figures 5(i)–5(j) report the results on Friendster and UKWeb, re-
spectively. On average, (1)HCon is 1.8 times slower thanGraphChi
on Friendster and UKWeb, since contraction is more complicated
than graph partition of GraphChi; nonetheless, query processing
on the hierarchy contracted by HCon is much faster as shown ear-
lier; this justifies the one-time offline contraction cost of HCon.
HCon is 1.6 times faster than Mosaic, since Mosaic compresses
edges by Hilbert order, which requires one global sorting. (2) The
cost of synopses computation for the six query classes is low; it
only accounts for 33.1% of the total cost of HCon. (3) Incremental
IncHCon is faster than HCon even when |Δ𝐺 | is up to 25%|𝐺 |. It is
4.94 and 4.82 times faster on the two graphs when |Δ𝐺 | = 5%|𝐺 |,
and is 28.3 and 32.2 times faster when |Δ𝐺 | = 1%|𝐺 |. The results are
consistent when Δ𝐺 consists of insertions only or deletions only
(not shown). These justify the need of incremental contraction.
Preprocessing. To explore on-chip parallelism of our hierarchy
scheme, graphs are first edge-cut partitioned into fragments and
then contracted into hierarchy by HCon, while GraphChi and
Mosaic directly split graphs into disjoint intervals without edge-
cut partitioning. We find that on average, the preprocessing time
(including the costs of partitioning and HCon) of our scheme is 1.5
times faster than Mosaic, and is 1.9 times slower than GraphChi.

Exp-5: Scalability. Finally, we evaluated our (incremental) con-
traction scheme for its (1) scalability with graph size |𝐺 |, and (2)
scalability with the ratio𝑀/|𝐺 | of memory limit to graph size.
Scalability on |𝐺 |. Varying the size |𝐺 | = ( |𝑉 |, |𝐸 |) of synthetic
graphs from (100𝑀, 1.2𝐵) to (500𝑀, 6𝐵), we tested the scalability of
HCon and IncHCon (fixing |Δ𝐺 | = 1%|𝐺 | and 5%|𝐺 | for IncHCon).
We set memory limit 𝑀 as 2GB. As shown in Fig. 5(k), (1) HCon
and IncHCon still work well when |𝐺 | is 22.2 times of the memory.
(2) Both scale well when 𝐺 grows. When |Δ𝐺 | = 1%|𝐺 |, IncHCon
takes 96s on𝐺 with 100M nodes and 1.2B edges. In practice, |Δ𝐺 | ≤
0.1%|𝐺 | for large 𝐺 ; in this case, IncHCon takes at most 26.1s.
Scalability on𝑀/|𝐺 |. We evaluated the scalability of the contrac-
tion scheme with𝑀/|𝐺 | using Twitter. We varied𝑀/|𝐺 | from 0.2
to 1 (when 𝑀/|𝐺 | = 1, Twitter could fit in the memory without
contraction). Here LCCA is a full-memory single-machine imple-
mentation [10, 16]. As shown in Fig. 5(l), (1) LCCAh is still faster
than COST, GraphChi and Mosaic when 𝑀/|𝐺 | is 0.2. (2) When
𝑀/|𝐺 | is 0.4, LCCAh is faster than the full-memory computation of
LCC. The results for the other five query classes and on the other
graphs are consistent (not shown). These verify that our scheme

can efficiently answer queries on big graphs with limited memory.
On-chip parallelism. On average, on a single machine with 16 cores,
LCCAh, PRAh, CCAh, CDAh, SubAh and RPQAh are on average
5.9 times faster than on a machine with one core.

Summary. From the experiments we find the followings.
(1) The scheme enables a single machine to efficiently query big
graphs 𝐺 , even when memory is as small as 7.6% of |𝐺 |.
(2) On average, the scheme is (a) 7.3, 5.2, 14.4, 26.4, 12.9 and 15.7
times faster than COST for LCC, PR, SubIso, CC, CD and RPQ , (b)
1083.5, 5.3, 1716.8 and 17.3 times faster than GraphChi for LCC,
PR, CC and RPQ (for SubIso and CD, GraphChi either ran out
of memory or could not finish within 2 hours); and (c) 24.3, 4.8,
217.0 and 1.8 times faster than Mosaic for LCC, SubIso, CC and
RPQ (Mosaic ran out of memory for CD), respectively. For the 6
algorithms, it reduces the I/O cost of these three systems by 40.5%.
(3) For some algorithms it outperforms parallel systems that usemul-
tiple machines. It is faster than (a) GRAPE for LCC, SubIso, CC and
RPQ whenGRAPE used 2, 1, 5 and 1machines, (b)Gemini for LCC,
SubIso and CC with 6, 3 and 6 machines, (c) LA3 for LCC, SubIso,
CC and RPQ with 6, 6, 6 and 1 machines, and (d) it is 74.3, 1.3, 2.4
and 404.7 times faster than PowerGraph that used 6 machines for
LCC, PR, SubIso and CC, respectively. PowerGraph, Gemini and
LA3 ran out of memory on CD even with 6 machines; and for PR
and CD, GRAPE requires at least 3 machines on Friendster.
(4) The total space cost of our scheme is comparable to that of
disk-based COST, GraphChi andMosaic; it is on average 3.4 times
less than that of PowerGraph, GRAPE, Gemini and LA3.
(5) IncHCon is faster than HCon when |Δ𝐺 | is up to 25%|𝐺 |, and is
30.2 times faster when |Δ𝐺 |=1%|𝐺 |. Moreover, HCon and IncHCon
scale well with large graphs. On graphs with 6.5 billion nodes and
edges, IncHCon takes at most 26.1s when |Δ𝐺 | ≤ 0.1%|𝐺 |, while in
practice, updates to large graphs rarely exceed 0.1%|𝐺 |.

7 CONCLUSION
We have proposed a hierarchical contraction scheme for a single
machine to support multiple applications on graphs that do not fit
in memory. We have shown how to adapt existing single-machine
algorithms to the same scheme and compute exact answers for
representative query classes, without decontracting supernodes
of regular structures. We have also provided an incremental algo-
rithm to maintain the hierarchy, and shown its boundedness. Our
experimental study has verified that the scheme is effective.

One future work is to extend the scheme to train GCN [44] with
a single machine. To reduce heavy sampling cost of GCN models,
e.g., GraphSAGE [38], one could develop an online contraction
scheme. It iteratively contracts nodes that bear stable and similar
embeddings into supernodes. The supernodes carry a synopsis to
abstract key features of the contracted parts, to be reused in later
sampling iterations. This reduces the memory cost and further
speeds up the process by making big graphs smaller.

Acknowledgements. Fan, Li and Liu are supported in part
by ERC 652976 and Royal Society Wolfson Research Merit
Award WRM/R1/180014. Liu is also supported in part by EPSRC
EP/L01503X/1. Lu is supported in part by NSFC 62002236.

Session 24: Potpourri SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1738



REFERENCES
[1] 2006. Traffic. http://www.dis.uniroma1.it/challenge9/download.shtml.
[2] 2006. UKWeb. http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/.
[3] 2012. Friendster. https://snap.stanford.edu/data/com-Friendster.html.
[4] 2020. GRAPE. https://github.com/alibaba/libgrape-lite.git.
[5] 2020. GraphScope. https://graphscope.io/.
[6] Yousuf Ahmad, Omar Khattab, Arsal Malik, Ahmad Musleh, Mohammad Ham-

moud, Mucahid Kutlu, Mostafa Shehata, and Tamer Elsayed. 2018. LA3: A scalable
link-and locality-aware linear algebra-based graph analytics system. PVLDB 11,
8 (2018), 920–933.

[7] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter A. Boncz, George H. L.
Fletcher, Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow,
Juan F. Sequeda, Oskar van Rest, and Hannes Voigt. 2018. G-CORE: A Core for
Future Graph Query Languages. In SIGMOD. 1421–1432.

[8] Andrey Balmin, Vagelis Hristidis, and Yannis Papakonstantinou. 2004. Objectrank:
Authority-based keyword search in databases. In VLDB, Vol. 4. 564–575.

[9] Pablo Barceló Baeza. 2013. Querying graph databases. In PODS. 175–188.
[10] Chris Barrett, Keith Bisset, Martin Holzer, Goran Konjevod, MadhavMarathe, and

Dorothea Wagner. 2008. Engineering label-constrained shortest-path algorithms.
In AAIM. Springer, 27–37.

[11] Chris Barrett, Riko Jacob, and Madhav Marathe. 2000. Formal-language-
constrained path problems. SIAM J. Comput. 30, 3 (2000), 809–837.

[12] Pavel Berkhin. 2005. A survey on PageRank computing. Internet mathematics 2,
1 (2005), 73–120.

[13] Nina Berry, Teresa Ko, Tim Moy, Julienne Smrcka, Jessica Turnley, and Ben Wu.
2004. Emergent clique formation in terrorist recruitment. In AAAI Workshop on
Agent Organizations: Theory and Practice.

[14] Maciej Besta and Torsten Hoefler. 2018. Survey and Taxonomy of Lossless Graph
Compression and Space-Efficient Graph Representations. CoRR abs/1806.01799
(2018).

[15] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Compres-
sion techniques. InWWW. 595–602.

[16] Béla Bollobás. 2013. Modern graph theory. Vol. 184. Springer Science & Business
Media.

[17] Coen Bron and Joep Kerbosch. 1973. Algorithm 457: finding all cliques of an
undirected graph. Commun. ACM 16, 9 (1973), 575–577.

[18] Yang Cao and Wenfei Fan. 2016. An Effective Syntax for Bounded Relational
Queries. In SIGMOD.

[19] Yang Cao,Wenfei Fan, and Ruizhe Huang. 2015. Making Pattern Queries Bounded
in Big Graphs. In ICDE.

[20] Yang Cao, Wenfei Fan, Yanghao Wang, and Ke Yi. 2020. Querying Shared Data
with Security Heterogeneity. In SIGMOD. 575–585.

[21] Yang Cao, Wenfei Fan, Yanghao Wang, Tengfei Yuan, Yanchao Li, and Laura Yu
Chen. 2017. BEAS: Bounded Evaluation of SQL Queries. In SIGMOD.

[22] Yuze Chi, Guohao Dai, Yu Wang, Guangyu Sun, Guoliang Li, and Huazhong Yang.
2016. Nxgraph: An efficient graph processing system on a single machine. In
ICDE. IEEE, 409–420.

[23] Sara Cohen. 2016. Data management for social networking. In PODS. 165–177.
[24] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A (sub)

graph isomorphism algorithm for matching large graphs. TPAMI 26, 10 (2004),
1367–1372.

[25] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2009.
Introduction to algorithms. MIT press.

[26] Wenfei Fan, Floris Geerts, Yang Cao, and Ting Deng. 2015. Querying Big Data
by Accessing Small Data. In PODS.

[27] Wenfei Fan, Chunming Hu, and Chao Tian. 2017. Incremental graph computa-
tions: Doable and undoable. In SIGMOD.

[28] Wenfei Fan, Jianzhong Li, Xin Wang, and Yinghui Wu. 2012. Query preserving
graph compression. In SIGMOD. 157–168.

[29] Wenfei Fan, Yuanhao Li, Muyang Liu, and Can Lu. 2021. Making Graphs Compact
by Lossless Contraction. (2021). SIGMOD.

[30] Wenfei Fan, Xin Wang, and Yinghui Wu. 2014. Distributed graph simulation:
Impossibility and possibility. PVLDB 7, 12 (2014), 1083–1094.

[31] Wenfei Fan, Xin Wang, Yinghui Wu, and Jingbo Xu. 2015. Association rules with
graph patterns. PVLDB 8, 12 (2015), 1502–1513.

[32] Wenfei Fan, Yinghui Wu, and Jingbo Xu. 2016. Functional dependencies for
graphs. In SIGMOD.

[33] Wenfei Fan, Wenyuan Yu, Jingbo Xu, Jingren Zhou, Xiaojian Luo, Qiang Yin, Ping
Lu, Yang Cao, and Ruiqi Xu. 2018. Parallelizing Sequential Graph Computations.
TODS 43, 4 (2018), 18:1–18:39.

[34] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs.
In SIGMOD. 1433–1445.

[35] Michael Garey and David Johnson. 1979. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company.

[36] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. Powergraph: Distributed graph-parallel computation on natural graphs. In

OSDI. 17–30.
[37] Claudio Gutierrez, Carlos A Hurtado, Alberto O Mendelzon, and Jorge Pérez.

2011. Foundations of semantic web databases. J. Comput. System Sci. 77, 3 (2011),
520–541.

[38] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. (2017).

[39] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. 2013. Turboiso: Towards
ultrafast and robust subgraph isomorphism search in large graph databases. In
SIGMOD.

[40] Lifeng He, Yuyan Chao, Kenji Suzuki, and Kesheng Wu. 2009. Fast connected-
component labeling. Pattern recognition 42, 9 (2009), 1977–1987.

[41] Martin Szummer Tommi Jaakkola and Martin Szummer. 2002. Partially labeled
classification with Markov random walks. NIPS 14 (2002), 945–952.

[42] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. 2008. Efficiently an-
swering reachability queries on very large directed graphs. In SIGMOD. 595–608.

[43] U Kang, Mary McGlohon, Leman Akoglu, and Christos Faloutsos. 2010. Patterns
on the connected components of terabyte-scale graphs. In ICDM. 875–880.

[44] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. ICLR (2016).

[45] Ina Koch. 2001. Enumerating all connected maximal common subgraphs in two
graphs. Theoretical Computer Science 250, 1-2 (2001), 1–30.

[46] Walter Kropatsch. 1996. Building irregular pyramids by dual-graph contraction.
In Vision Image and Signal Processing.

[47] Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-Scale
Graph Computation on Just a PC. In OSDI. 31–46.

[48] Theodoros Lappas, Kun Liu, and Evimaria Terzi. 2009. Finding a team of experts
in social networks. In KDD.

[49] Kristen LeFevre and Evimaria Terzi. 2010. GraSS: Graph structure summarization.
In SDM. SIAM, 454–465.

[50] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef,
Sören Auer, and Christian Bizer. 2015. DBpedia - A large-scale, multilingual
knowledge base extracted from Wikipedia. Semantic Web 6, 2 (2015), 167–195.

[51] Ulf Leser. 2005. A query language for biological networks. Bioinformatics 21,
suppl_2 (2005), ii33–ii39.

[52] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. 2005. Graphs over time:
Densification laws, shrinking diameters and possible explanations. In SIGKDD.

[53] Kingsly Leung and Christopher Leckie. 2005. Unsupervised anomaly detection
in network intrusion detection using clusters. In ACSW.

[54] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. 2018. Graph Summa-
rization Methods and Applications: A Survey. ACM Comput. Surv. 51, 3 (2018),
62:1–62:34.

[55] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and JosephMHellerstein. 2012. Distributed GraphLab: A Framework for Machine
Learning and Data Mining in the Cloud. PVLDB 5, 8 (2012).

[56] SteffenMaass, ChangwooMin, Sanidhya Kashyap,Woonhak Kang,MohanKumar,
and Taesoo Kim. 2017. Mosaic: Processing a trillion-edge graph on a single
machine. In EuroSys. 527–543.

[57] Antonio Maccioni and Daniel J Abadi. 2016. Scalable pattern matching over
compressed graphs via dedensification. In SIGKDD. 1755–1764.

[58] WimMartens and Tina Trautner. 2018. Evaluation and enumeration problems for
regular path queries. In ICDT. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[59] Julian McAuley and Jure Leskovec. 2012. Learning to Discover Social Circles in
Ego Networks. In NIPS.

[60] Frank McSherry, Michael Isard, and Derek Gordon Murray. 2015. Scalability! But
at what COST?. In HotOS.

[61] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. 2015.
The graph structure in the web–analyzed on different aggregation levels. The
Journal of Web Science 1 (2015).

[62] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[63] Symeon Papadopoulos, Yiannis Kompatsiaris, Athena Vakali, and Ploutarchos
Spyridonos. 2012. Community detection in social media. Data Mining and
Knowledge Discovery 24 (2012).

[64] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. 2009. Semantics and com-
plexity of SPARQL. TODS 34, 3 (2009), 16:1–16:45.

[65] Ganesan Ramalingam and Thomas Reps. 1996. An incremental algorithm for a
generalization of the shortest-path problem. Journal of Algorithms 21, 2 (1996),
267–305.

[66] Ganesan Ramalingam and Thomas Reps. 1996. On the computational complexity
of dynamic graph problems. Theoretical Computer Science 158, 1-2 (1996), 233–
277.

[67] Thomas Reps. 1998. Program analysis via graph reachability. Information and
software technology 40, 11-12 (1998), 701–726.

[68] Royi Ronen and Oded Shmueli. 2009. SoQL: A language for querying and creating
data in social networks. In ICDE. IEEE, 1595–1602.

[69] George M Slota, Sivasankaran Rajamanickam, and Kamesh Madduri. 2017.

Session 24: Potpourri SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1739



PuLP/XtraPuLP: Partitioning Tools for Extreme-Scale Graphs. Technical Report.
Sandia National Lab (SNL-NM), Albuquerque, NM, US.

[70] Stergios Stergiou, Dipen Rughwani, and Kostas Tsioutsiouliklis. 2018. Shortcut-
ting label propagation for distributed connected components. InWSDM. 540–546.

[71] Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM journal
on computing 1, 2 (1972), 146–160.

[72] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda,
and John McPherson. 2013. From" think like a vertex" to" think like a graph".
PVLDB 7, 3 (2013), 193–204.

[73] Yuanyuan Tian, Richard A Hankins, and Jignesh M Patel. 2008. Efficient aggre-
gation for graph summarization. In SIGMOD. 567–580.

[74] Lucien DJ Valstar, George HL Fletcher, and Yuichi Yoshida. 2017. Landmark
indexing for evaluation of label-constrained reachability queries. In SIGMOD.
345–358.

[75] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi.
2016. PGQL: A property graph query language. In GRADES.

[76] W3C Recommendation. 2008. SPARQL Query Language for RDF.
https://www.w3.org/TR/rdf-sparql-query/.

[77] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2015. Effective techniques for
message reduction and load balancing in distributed graph computation. In
WWW. 1307–1317.

[78] Jin Y Yen. 1971. Finding the k shortest loopless paths in a network. Management
Science 17, 11 (1971), 712–716.

[79] Quan Yuan, Gao Cong, and Aixin Sun. 2014. Graph-based point-of-interest
recommendation with geographical and temporal influences. In CIKM. 659–668.

[80] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A computation-centric distributed graph processing system. In OSDI. 301–316.

Session 24: Potpourri SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1740


	Abstract
	1 Introduction
	2 A Hierarchical Graph Scheme
	3 Contracting Big Graphs
	3.1 Contraction Algorithm
	3.2 Deducing Synopses
	3.3 APIs

	4 Computing Exact Answers
	4.1 PageRank
	4.2 Label Constrained Connectivity
	4.3 Graph Pattern Matching
	4.4 CC, CD and blackRPQ

	5 Incremental Contraction
	6 Experimental Study
	7 Conclusion
	References



