
Dynamic Scaling for Parallel Graph

Computations

Muyang Liu
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science by Research

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2019

Abstract

This thesis studies scaling out/in to cope with load surges. Given a graph G that is

vertex-partitioned and distributed across n processors, it is to add (resp. remove) k

processors and re-distribute G across n+ k (resp. n− k) processors such that the load

among the processors is balanced, and its replication factor and migration cost are

minimized.

We show that this tri-criteria optimization problem is intractable, even when k

is a constant and when either load balancing or minimum migration is not required.

Nonetheless, we propose two parallel solutions to dynamic scaling. One consists of

approximation algorithms by extending consistent hashing. Given a load balancing

factor above a lower bound, the algorithms guarantee provable bounds on both replica-

tion factor and migration cost. The other is a generic scaling scheme. Given any exist-

ing vertex-partitioner VP of users’ choice, it adaptively scales VP in and out such that

it incurs minimum migration cost, and ensures balance and replication factors within a

bound relative to that of VP. Using real-life and synthetic graphs, we experimentally

verify the efficiency, effectiveness and scalability of the solutions.

i

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my principle super-

visor, Professor Wenfei Fan, for his guidence, trust, encouragement and support. He

introduced me to database theory, gave me advice on my career and trained me in ev-

ery aspect of doing research. His talent, self-discipline, passion for research and hard

work inspired me to keep working on challenging problems. Without his supervision

and unfailing support, this thesis would not have been possible.

I am very grateful to my collaborators, Ruochun Jin, Yuanhao Li, Dr. Ping Lu,

Dr. Chao Tian, Dr. Jingbo Xu, Ruiqi Xu, Dr. Qiang Yin and Dr. Wenyuan Yu, who

supported me with their constructive advice and valuable experience. I feel lucky to

work with these brilliant and passionate researchers.

I would like to thank the Engineering and Physical Sciences Research Council

(grant EP/L01503X/1), EPSRC Centre for Doctoral Training in Pervasive Parallelism

at the University of Edinburgh, School of Informatics. This thesis is supported, in part,

by its scholarship.

I would also like to express my heartfelt thanks to my fellow colleagues in the

Database group and Pervasve Parallelism project, for the helpful seminars, constructive

discussions and all the fun memories I have had through the last year.

Finally, I would like to thank my parents and Lai, for their unconditional support

and love. My heartfelt gratitude also goes to my friends, whom I consider part of my

family, for their continuous help: Mahesh Dananjaya, Shangmin Guo, Wenbin Hu,

Yiyun Jin, Shuyao Li, Siting Lu, Zezhong Wang, Yan Yang and Hao Zheng.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Muyang Liu)

iii

Table of Contents

1 Introduction 1

2 Related Work 5

3 The Dynamic Scaling Problem 9

4 Approximation Algorithms 12
4.1 Consistent Hashing and Extension 12

4.2 Algorithms for Scaling Out and In 14

4.3 Parallelization . 21

5 A Generic Scaling Scheme 23
5.1 Dynamic Scaling Scheme . 23

5.2 Scaling Stream Partitioners . 25

6 Experimental Study 28

7 Conclusion 38

Bibliography 39

A Appendix: Proofs and Details 44

iv

Chapter 1

Introduction

In the real world, an e-commerce system often experiences load surges. For instance,

its load during Christmas and Valentine’s Day is often much heavier, not to mention

sales triggered by unexpected hot events. This gives rise to a natural question: how

many processors should we allocate to such a system? Obviously, maintaining suffi-

cient resources just to meet peak requirements is too costly [Chieu et al., 2009].

This highlights the need for dynamic scaling. It is to adaptively scale out and in,

i.e., add and remove processors when load jumps up and down, respectively, to improve

resource utilization and reduce costs. We allocate resources on demand, instead of

sticking to a one-size-fit-all configuration.

Challenges. Dynamic scaling is, however, quite hard. To see this, consider an e-

commerce system that employs n processors and maintains a graph G that models

transactions. To maintain scalability, G is evenly partitioned into fragments and dis-

tributed across n processors for load balancing. Moreover, to reduce communication

cost, it is often necessary to minimize the replication factor, i.e., the copies of vertices

that reside in different processors. When k processors are added or removed, it is often

a must to re-partition G such that in addition to load balancing and minimum replica-

tion factor, the migration cost is minimized, i.e., the amount of data moved from one

processor to another.

Example 1: Consider the graph G = (V,E) in Fig. 1.1 (a). It has two types of nodes:

user nodes u1, . . . , u6 and product nodes p1, . . . , p5. In Fig. 1.1 (a), the edge set of G

is split into two parts by a partition Π1. Observe the following.

(1) The partition quality of Π1 is usually measured by both balance factor and repli-

cation factor. (a) The balance factor ε controls that the size of each fragment is not

1

Chapter 1. Introduction 2

Figure 1.1: Partitions of a graph

too far from the average. Imbalanced partitions often lead to skewness and stragglers,

which slow down computations. For ε ≥ 0, a partition is ε-balanced if each fragment

is bounded by d(1+ ε)|E|/ne. For Π1, ε = 0 since the size of each part is at most

d(1+ ε)|E|/2e = 8. (b) Its replication factor ∂(Π1) = 16/11, defined as the ratio of

total occurrences of nodes in different fragments to the total number |V | of nodes in G.

The smaller ∂(Π1) is, the better partition Π1 is.

Consider scaling out Π1 by adding k = 3 processors to n = 2. When ε = 0, the

size of each fragment is at most 4. Such a partition Π2 is shown in Fig. 1.1 (b). To get

Π2 from Π1, one has to move 9 edges, e.g., the edges relative to u2,u3,u5 and u6, to

new processors. Hence the migration cost from Π1 to Π2 is 9. Its replication factor is

∂(Π2) = 23/11.

(2) Given ε, it is not easy to scale out Π1 while minimizing replication factor f and

migration cost m. These factors interact with each other, e.g., when ε = 0, (a) to

balance load, the minimum cost is 8 (different from the cost 9 for Π2); (b) when

moving 8 edges, the best f we can get is 20/11; but (c) to get an optimal f = 18/11,

we need to move 12 edges. It is also nontrivial to identify which edges to be moved.

Moreover, graph G has to be re-partitioned in parallel. This is because G is already

partitioned across a cluster of machines (e.g., by Π1 above); moreover, when G is large,

it is not realistic to re-partition G by a single machine. 2

We show that dynamic scaling is NP-complete. It remains intractable even when

(a) the number k of processors added or removed during scaling is a constant, and (b)

we put no restriction on either balance factor or migration cost.

Chapter 1. Introduction 3

While there has been work on dynamic scaling [Chieu et al., 2009, Yu and Cai,

2016, Wang et al., 2012, Nguyen et al., 2013, Pujol et al., 2010, Vaquero et al., 2014],

few of these considered how to adaptively partition graphs in scaling, and none offered

guarantees on balance factor, replication factor and migration cost.

One might think that incremental graph partitioners [Xu et al., 2014, Shang and Yu,

2013, Schloegel et al., 1997, Walshaw et al., 1997, Huang and Abadi, 2016, Nicoara

et al., 2015, Zheng et al., 2016, Dai et al., 2017, Vaquero et al., 2014] could be

used for dynamic scaling. Given a partition P (G) of graph G and updates ∆G to

G, it is to compute changes ∆O to P (G) such that P (G⊕∆G)=P (G)⊕∆O, where ⊕
applies changes ∆G (resp. ∆O) to G (resp. P (G)). However, (a) the two are different

problems: dynamic scaling is to re-partition graph G in response to addition or

removal of k processors, not to changes ∆G to G. Moreover, (b) in practice it is often

the case that k>n, and hence the changes ∆G and ∆O are large. It is known that when

the changes are large, incremental partitioning works no better than re-partitioning the

entire graph G starting from scratch. Thus incremental partitioning techniques do not

apply to dynamic scaling and vice versa.

Approximation and generic methods. We propose two solutions. There are two

general approaches to graph partitioning: edge-cut and vertex-cut. We focus on vertex-

cut here since it has not been as well studied as edge-cut.

(1) Approximate algorithms. In light of the intractability of dynamic scaling, the best

practical solution we can hope for is approximation. We develop such a solution that

consists of two approximate algorithms. Given a vertex-cut partition Π(n) of a graph

G via hashing, balance factor ε and a number k, algorithms BVC− and BVC+ scale in

and out Π(n) to get a new ε-balanced partition Π(n− k) and Π(n+ k), respectively,

by extending consistent hashing. Better yet, we show that when ε is above a small

threshold, the algorithms guarantee bounds on both replication factor f and migration

cost m. To the best of our knowledge, the algorithms make the first solution to

dynamic scaling with such bounds.

(2) A scaling scheme. While the solution above offers provable bounds on f and m,

it requires to start with an initial partition based on hashing. Is it possible to scale an

arbitrary vertex-cut partitioner VP of users’ choice?

The answer is affirmative. We propose a generic scheme. Given an existing VP, it

deduces two algorithms VP+ and VP− to scale VP out and in, respectively. We show

that these algorithms incur minimum migration cost. Moreover, its partition quality is

Chapter 1. Introduction 4

within a bound relative to that of VP. That is, while the scaling scheme provides no

absolute bounds like the approximate algorithms above, it provides bounds relative to

VP. Hence if users have been using VP, the quality of VP+ and VP− is acceptable to

them.

Contributions & Organization. Putting these together, the thesis (1) formalizes the

dynamic scaling problem and establishes its complexity (Chapter 3); (2) provides an

approximation solution with bounds on replication factor and migration cost (Chap-

ter 4); and (3) proposes a generic scheme to scale existing vertex-cut partitioners with

low migration cost and relative bounds on partition quality (Chapter 5).

(4) Experimental study (Chapter 6). Using real-life and synthetic graphs, we empiri-

cally verify the efficiency, partition quality and scalability of our scaling algorithms.

We find the following. (a) Parallel BVC+ (resp. BVC−) algorithm outperforms hash-

based and stream-based competitors by 7.4 and 19.7 (resp. 8.5 and 18.2) times in effi-

ciency, respectively. (b) These algorithms also do better in replication factor than hash-

based competitors by 1.94 and 2.04 times, up to 3.82 and 3.79 times. (c) Our generic

scaling scheme is promising. Two stream-based scaling algorithms deduced under this

scheme are able to achieve partition quality as good as re-partitioning, and are 43.8

and 40.7 times faster on average, up to 114.7 and 132.3 times. (d) Our algorithms

scale well with large n, k and graphs; e.g., parallel BVC+ (resp. BVC−) takes 9.45s

(resp. 11.37s) on graphs with 440 million nodes and 14 billion edges when n = 320

and k > n
3 .

This work is among the first systematic study of dynamic scaling, from complexity

and approximation to scaling of existing partitioners. All proofs of the results are in

Appendix A.

Chapter 2

Related Work

We summarize the related work as follows.

Graph partitioning. Vertex-cut was proposed in [Gonzalez et al., 2012]. It was shown

in [Bourse et al., 2014] that it is NP-complete to minimize the replication factor f

when evenly partitioning a graph. It is NP-hard even when the balance factor is fixed

[Zhang et al., 2017]. A simple vertex-cut strategy is to assign edges to fragments

randomly by hashing. However, this usually leads to bad locality since it ignores the

structures of input graphs [Chen et al., 2015]. 2DHash [Xin et al., 2013] mitigates this

problem by maintaining a 2
√

n−1 bound on f , where n is the number of fragments.

Degree-based hash partitioning [Xie et al., 2014] assigns edges based on vertex degrees

and favors cutting vertices with relatively large degrees. HDRF [Petroni et al., 2015]

also replicates (or cuts) high-degree vertices in streaming partition. Apart from these,

several heuristics were developed, e.g., [Chen et al., 2015, Margo and Seltzer, 2015,

Zhang et al., 2017].

This work differs from the prior work in the following.

(1) As a special case of Theorem 1 (k = 0∧m = ∞), we show that vertex-cut parti-

tioning is NP-hard even when we put no constraint on the balance factor ε. This is

analogous to its edge-cut counterpart [Goldschmidt and Hochbaum, 1994]. This is

not implied by the results of [Bourse et al., 2014, Zhang et al., 2017], and cannot be

improved by further restricting ε.

Moreover, we settle the complexity of dynamic scaling and reveal what dominates

the cost (Theorem 1). To the best of our knowledge, no previous work has studied this

issue.

(2) For partition quality, algorithms BVC+ and BVC− guarantee both a bound on the

5

Chapter 2. Related Work 6

replication factor and the balance of partitions. The bound differs from the one of the

degree-based approach in [Xie et al., 2014] by only a small factor, a small price for

balancing, which is not guaranteed by [Xin et al., 2013, Xie et al., 2014, Petroni et al.,

2015, Margo and Seltzer, 2015].

(3) BVC+ and BVC− adopt consistent hashing to prepare for dynamic scaling, which

allows us to adjust an existing partition in response to adding or removing processors,

without re-partitioning the graph starting from scratch. It was not studied in the prior

work [Xin et al., 2013, Gonzalez et al., 2012, Xie et al., 2014, Petroni et al., 2015,

Bourse et al., 2014, Zhang et al., 2017].

Consistent hashing. The method was proposed in [Karger et al., 1997] to reduce the

movement of hashed clients when the size of hash table changes (see Section 4.1).

As shown in [Raab and Steger, 1998, Mirrokni et al., 2018], when there are far more

clients than servers as in real-life dynamic scaling, simple consistent hashing [Karger

et al., 1997] suffers from imbalanced load. In [Mirrokni et al., 2018], a simple linear

probing technique was integrated into consistent hashing to deal with load balancing.

A popular variant is DHT (distributed hash table), e.g., CAN [Ratnasamy et al.,

2001] and Chord [Stoica et al., 2001]. DHT employs consistent hashing to store

key-value pairs in a distributed setting, for users to locate a key-value pair with a given

key, via “hashing”.

Closer to this work are [Ratnasamy et al., 2001, Naor and Wieder, 2007, Malkhi

et al., 2002, Karger and Ruhl, 2004, Kenthapadi and Manku, 2005] for adding or re-

moving servers (analogous to fragments) in DHT, and [DeCandia et al., 2007, Li and

Venugopal, 2013] for balancing the workload of servers in DHT. When adding a new

server, CAN [Ratnasamy et al., 2001] bisects a randomly picked zone, which plays

the same role as an “interval”, and assigns one of the half zones to the new server.

A bucket solution was given in [Naor and Wieder, 2007, Malkhi et al., 2002] to han-

dle server removal, and multiple-choice algorithms were used in [Naor and Wieder,

2007, Kenthapadi and Manku, 2005] to add servers. Servers are evenly distributed

over a unit circle for load balancing [DeCandia et al., 2007]. Upper and lower bounds

for workload are used to guide interval adjustments [DeCandia et al., 2007].

Our work differs from the prior work in the following.

(1) In contrast to [Karger et al., 1997, Mirrokni et al., 2018] that hash fragments, we

assign the fragments in a different way to ensure that its distribution is as uniform

as possible. This also helps us balance load when used together with the technique

Chapter 2. Related Work 7

of [Mirrokni et al., 2018].

(2) We propose a strategy to add or remove fragments for dynamic scaling. (a) To add

fragments, we bisect a largest interval, rather than randomly picking one [Ratnasamy

et al., 2001, Naor and Wieder, 2007]; (b) we define an order in which fragments are

removed; and (c) we add or remove fragments, but do not move fragments as in [Naor

and Wieder, 2007, Malkhi et al., 2002, Karger and Ruhl, 2004]. These help us guaran-

tee provable bounds on load balance, replication factor and migration cost.

(3) We integrate a degree-based approach [Xie et al., 2014] with consistent hashing,

to leverage the coherence of edges (or clients) and bound the replication factor. In

contrast, consistent hashing often treats all clients equally and thus ignores their coher-

ence. Directly adopting such approaches in our setting fails to provide a bound on the

replication factor.

Scaling. The study of dynamic scaling has mostly focused on how to allocate virtual

machines (VMs) when load varies in cloud computing [Chieu et al., 2009, Yu and Cai,

2016, Wang et al., 2012, Nguyen et al., 2013], or how to reduce energy consumption

when workload is low [Lang and Patel, 2010, Leverich and Kozyrakis, 2010]. For

cloud computing, [Chieu et al., 2009] allocates VMs based on thresholds of virtual

setting. AGILE [Nguyen et al., 2013], a resource scaling system, assigns new VMs

based on a resource demand predictor. Adjustment of VMs was studied in [Nguyen

et al., 2013] under constraints on communication costs. An algorithm for allocating

VMs was given in [Wang et al., 2012] in a hierarchically structured cloud. In a tree-

structured virtual network, [Yu and Cai, 2016] considered how to allocate VMs to meet

bandwidth requirements. For energy management, a covering set strategy [Leverich

and Kozyrakis, 2010] and an all-in strategy [Lang and Patel, 2010] were proposed to

select power-down nodes when the utilization is low.

The scaling problems studied in the prior work differ from DS(ε, f ,m) (Chap-

ter 3) in that it does not consider graph partitioning, not to mention its three objectives

(ε, f ,m).

Closer to this work are [Pujol et al., 2010, Vaquero et al., 2014, Curino et al.,

2010], which study graph partitioning in dynamic scaling; these focus on edge-cut par-

titioning. A greedy heuristic was developed in [Pujol et al., 2010] to migrate vertices

when scaling; [Vaquero et al., 2014] randomly picks vertices based on a given proba-

bility, and moves the vertices to other fragments in response to changes to the graphs;

and [Curino et al., 2010] adopts a lazy strategy: when a worker is added, necessary

Chapter 2. Related Work 8

vertices are moved to it only when the worker processes a query.

This work differs from [Pujol et al., 2010, Vaquero et al., 2014, Curino et al.,

2010] in the following. (a) We study scaling with vertex-cut partition, which is not yet

well studied, as opposed to edge-cut. (b) None of [Pujol et al., 2010, Vaquero et al.,

2014, Curino et al., 2010] guarantees partition quality as we do. In particular, [Curino

et al., 2010] accumulates vertices at new workers and is not load balanced. (c) We

propose a generic scheme to scale existing vertex partitioners with (relative) bounds

on migration cost and partition quality. No previous work has studied this.

Chapter 3

The Dynamic Scaling Problem

We first state the problem and settle its complexity.

Preliminaries. We consider (un)directed graphs G = (V,E), where V is the set of

vertices, and E ⊆V ×V is the set of edges. Denote by (a) v(e) = {u,w} the set of two

end-points of an edge e, and (b) v(E ′) =
⋃

e∈E ′ v(e) the set of vertices that are on the

edges in a set E ′ ⊆ E.

Partitions. A vertex-cut n-partition of graph G = (V,E) is Π(n) = (E1,E2, . . . ,En),

which partitions the edge set E into n disjoint sets. We refer to Ei as a fragment of

Π(n).

A n-partition Π(n) induces n subgraphs G1, G2, . . . , Gn of G, where Gi =

(v(Ei),Ei), such that V =
⋃

i∈[1,n] v(Ei) and E =
⋃

i∈[1,n]Ei. To simplify the presen-

tation, we assume w.l.o.g. that each Ei is nonempty in the sequel.

There are two criteria to evaluate the quality of Π(n).

(a) Balance factor. Given ε≥ 0, Π(n) is called ε-balanced if

max{|E1|, . . . , |En|} ≤ d(1+ ε)|E|/ne.

That is, no Ei is substantially larger than the average.

(b) Replication factor. The replication factor of Π(n) is

∂(Π(n))=
1
|V |

n

∑
i=1
|v(Ei)|.

Intuitively, the larger ∂(Π(n)) is, the higher the communication cost is for synchro-

nization in a distributed setting.

Scaling. Given an integer k ∈ (−n,∞) and a n-partition Π(n) of G, we want to

9

Chapter 3. The Dynamic Scaling Problem 10

reconfigure Π(n) to a new partition Π(n+ k). This is called scaling in if −n<k<0 by

reducing |k| processors; and scaling out if k > 0 by adding k processors.

The migration cost from Π(n) to Π(n+ k) is the number of edges moved to get

Π(n+ k), including (a) edges migrated from G1, . . . , Gn to the (new) fragments of

Π(n+ k), and (b) edges moved among G1, . . . ,Gn+k to be rebalanced.

The dynamic scaling problem is stated as follows.

◦ Input: A n-partition Π(n) of G, an integer k >−n, a balance factor ε, a replication

factor f , and a bound m.

◦ Question: Does there exist an ε-balanced vertex-cut (n+ k)-partition Π(n+ k) of

G such that ∂(Π(n+ k))≤ f and migration cost from Π(n) to Π(n+ k) is at most

m?

That is, under balance factor ε and replication factor f , it aims to minimize the migra-

tion cost of dynamic scaling.

Complexity. The dynamic scaling problem bears three criteria: a balance factor ε,

a replication factor f and a bound m on moving cost. We denote it as DS(ε, f ,m) or

simply DS.

To identify the impact of the three criteria on the complexity, we also study three

variants of DS(ε, f ,m), when one of the three criteria is dropped. Denote by DS(f ,m),

DS(ε,m) and DS(ε, f) the three variants when dropping constraints on balance factor

ε, replication factor f and migration cost m, respectively. For example, DS(f ,m) asks

whether there exists a partition Π(n+k) of G such that ∂(Π(n+k))≤ f and migration

cost from Π(n) to Π(n+ k) is at most m, no longer requiring Π(n+ k) to be load

balanced.

It is not surprising that DS(ε, f ,m) is NP-complete. We show that the intractabil-

ity is quite robust: it remains NP-hard as long as the replication factor is one of the

optimization goals, even when k is a constant, i.e., the number of processors added or

removed is predefined and fixed.

Theorem 1: (1) Each of DS, DS(f ,m) and DS(ε, f) is NP-complete, and remains

NP-hard even when k is a constant.

(2) DS(ε,m) is in PTIME; and DS(f ,m) is in PTIME when both k and n are fixed and

when m is ∞ (unrestricted). 2

Proof: (1) An NP algorithm for DS works as follows: it first guesses a (n+k)-partition

and then checks in PTIME whether the three constraints are satisfied. Hence DS is in

Chapter 3. The Dynamic Scaling Problem 11

NP, and so are its special cases DS(f ,m) and DS(ε, f).

We verify the NP-hardness of DS and DS(ε, f) by reduction from the 3-partition

problem [Andreev and Racke, 2006], and DS(f ,m) by reduction from the maximal

clique problem (cf. [Garey and Johnson, 1979]). The reductions are constructed with

constant k (see Appendix A.1 for proof).

(2) For DS(ε,m), the PTIME algorithm below suffices. Each time it moves one edge

from the largest fragment to a minimum one until either (a) the balance factor gets

back to ε (Yes); or (b) the migration cost exceeds the bound m (No).

When neither ε nor m is bounded and when both n and k are constants, we first show

that there exists a partition such that its replication factor is minimal, and the number

of cut nodes is bounded by a constant, where cut nodes are the ones that appear in more

than one fragment. Based on this property, we give a PTIME algorithm for DS(f ,m)

with m=∞: (a) enumerate all possible sets of cut nodes; (b) for each set S of cut nodes,

compute the associated replication factor fS, and check whether fS is no larger than f .

2

Chapter 4

Approximation Algorithms

In light of the intractability of DS(ε, f ,m), the best practical solutions are approximate

algorithms. We now develop such a solution. It consists of algorithms BVC+ and

BVC− to scale out and in a partition Π(n) of a graph to an ε-balanced partition Π(n+

k), respectively (Section 4.2). Given any balance factor ε above a small threshold,

both algorithms guarantee bounds on replication factor f and migration cost m. We

parallelize these algorithms (Section 4.3), retaining the same bounds. We are not aware

of other dynamic scaling solutions that offer such bounds.

Our solution extends consistent hashing [Karger et al., 1997, Mirrokni et al., 2018]

and hash-based partitioning [Xie et al., 2014]. We remark the following (see Chapter 1

for details). (1) None of the prior algorithms works on dynamic scaling, especially for

deciding which fragments to be removed or added while ensuring a bound on replica-

tion factor f . (2) As observed in [Byers et al., 2003, Karger and Ruhl, 2004, Xin et al.,

2013, Raab and Steger, 1998, Mirrokni et al., 2018], consistent hashing does no better

than random hash partitioning and gives no guarantee on partition quality. (3) In par-

ticular, the algorithms of [Karger et al., 1997, Mirrokni et al., 2018] have no guarantee

on replication factor f , and [Xie et al., 2014] gives no guarantee on balance factor ε.

4.1 Consistent Hashing and Extension

We first review consistent hashing, and then outline our extension to cope with dynamic

scaling. Consider mapping M balls to N bins. Consistent hashing [Karger et al., 1997]

is a hash-style solution, using two different hash functions hM and hN , with the same

range. The range is modeled as a hash ring, a unit circle C . It first hashes the balls and

bins to locations on C by applying hM and hN , respectively. Each ball is then mapped

12

Chapter 4. Approximation Algorithms 13

to the nearest bin on C in the clockwise order.

Its advantage is that when the number of bins changes dynamically, the number of

balls that need remapping is small. When removing a bin from C (scale in), only the

balls in the deleted bin are remapped to the next bin on C in the clockwise order. When

adding a new bin on C (scale out), it first finds certain balls that are hashed to locations

between the new bin and its previous bin in the clockwise order. It then remaps these

balls to the new bin.

For dynamic scaling, we can model edges as balls and fragments of a partition

as bins, and apply consistent hashing. However, we need to address the following

challenges.

(1) Replication factor. Consistent hashing treats all balls equally. This is equivalent to

hashing edges by a random hash function, which, as observed by [Xin et al., 2013],

often leads to poor locality. To rectify this, we employ degree-based hashing proposed

in [Xie et al., 2014], which favors cutting vertices with relatively large degrees. Intu-

itively, the replication factor gets smaller when more vertices with large degrees are

cut.

(2) Load balance. By hashing balls, a bin may have far more balls than the oth-

ers. Moreover, when M � N, the maximum load may deviate from the average by√
2M logN

N [Raab and Steger, 1998], where M and N are the number of balls and bins,

respectively. One might want to add virtual workers to mitigate the unbalance [Karger

et al., 1997], but it works only when M = O(N logN) [Raab and Steger, 1998]. For

graph partitioning, the number of balls is much larger than the number of bins, i.e.,

M � N, and adding virtual workers (a fragment is mapped to multiple positions in

circle C) cannot make the bins balanced.

To balance the workload, we enforce a given balance factor as a hard constraint,

and rebalance partitions by using a linear probing technique [Mirrokni et al., 2018].

In addition, we adopt degree-based hashing and extend consistent hashing to weighted

consistent hashing, which was not studied in [Karger et al., 1997, Mirrokni et al.,

2018].

(3) Migration cost. Consistent hashing maps fragments as bins on the circle C by

hash functions. However, when M � N, which is typically the case in our setting,

this usually incurs heavy cost in graph partition. This is because when balls are not

distributed evenly, some bins may be overfull, and balancing the bins increases the

migration cost.

Chapter 4. Approximation Algorithms 14

To minimize the cost, we propose a fragment placement strategy. Instead of hash-

ing the fragments, we first evenly distribute the fragments on the circle C [DeCandia

et al., 2007]. When scaling in or out, our placement strategy selects fragments to be

removed or added, and places the fragments on C as uniformly as possible. We will

see that this allows us to bound the migration cost. It also helps us improve partition

quality.

Notations. We will use the following notations. Consider a graph G = (V,E) in which

each vertex v∈V has a unique global id v.id. Given a unit circle C and a constant c, we

divide it into 2c segments, and use it as the hash ring. We use only one hash function

hM that maps the id’s of vertices to the locations of C , i.e., to the set {0,1, . . . ,2c−1}.
We consider power-law graphs. A graph follows power-law if the probability that

a vertex has degree d is given by

Pr(d) ∝ d−α,

where α is the power-law constant that controls the “skewness” of degree distribution.

Many real-life graphs follow the power law and have a power-law constant around

2 [Gonzalez et al., 2012]. The power-law constant helps us bound replication factor,

but it has no impact on the bound on migration cost.

4.2 Algorithms for Scaling Out and In

We now present algorithms BVC+ and BVC− for dynamic scaling out and in, respec-

tively. Given a partition Π(n) = (E1, . . . ,En) of graph G and a number k >−n, BVC+

and BVC− adjust Π(n) to get a new partition Π(n+ k). As remarked earlier, the algo-

rithms extend consistent hashing. Below we first show how to obtain an initial parti-

tion, to which BVC+ and BVC− are applied. We then present our scaling algorithms

and prove the performance guarantees.

Initial partition. Given a graph G and a number n, we extend consistent hashing to

compute an initial partition Π(n) = (E1, . . . ,En) of G. In contrast to classical consis-

tent hashing, (i) we use degree-based hashing to compute the hash value of edges to

improve replication factor; and (2) we evenly distribute the fragments on the unit circle

C to reduce migration cost. More specifically, the initial partition Π(n) = (E1, . . . ,En)

is computed as follows.

Chapter 4. Approximation Algorithms 15

(1) We first evenly distribute the fragments E1, . . . , En, i.e., bins, initially empty, on

the circle C . This is done by allocating each Ei (i∈[1,n]) at position id2c−1
n e on C .

(2) We then hash each edge e ∈ E by using its vertex with a relatively smaller degree.

More specifically, the hash value e.hash of an edge e = (u,v) is defined by

e.hash=

{
hM(v.id) deg(v)< deg(u),

hM(u.id) otherwise.

This favors cutting vertices with relative large degrees. Edge e is then assigned to the

nearest fragment clockwise. More specifically, denote by L1, L2, . . . , Ln the positions

of E1, . . . , En on C respectively, we assign e to Enext par(e,C), where

next par(e,C) = argmini∈[1,n]((Li− e.hash) mod 2c).

Example 2: For graph G of Fig. 1.1 (a), let c = 5, i.e., to divide circle C into 25 seg-

ments. Assume that hash function hM maps vertices onto C : p1→2, p2→20, p3→22,

p4→29, p5→30, u1→10, u2→12, u3→5, u4→21, u5→26, u6→25. Let n = 2, then

the initial partition Π(2) = (E1,E2) obtained as above is E1 = {e1,1,e1,3,e2,2,e2,3,e3,1,

e3,2,e3,5}, and E2 = {e2,4,e4,1,e4,3,e5,2,e5,3,e5,4,e5,5,e6,1,e6,5}. 2

Overview of BVC+ and BVC−. Given a number k>− n, a balance factor ε, and

a partition Π(n) that is an initial partition obtained as above, algorithms BVC+ and

BVC− adjust Π(n) to Π(n+k) in three steps as follows.

(1) Step (1) updates fragment placement on the circle C . Suppose that for i ∈ [1,n],

fragment Ei is placed at location Li before scaling starts. Given k, step (1) identifies |k|
locations to remove (scale in) or add (scale out) fragments.

To minimize the migration cost in the next steps, we propose a strategy to place the

fragments uniformly. Let I1, . . . , In be the n intervals on C induced by E1, . . . , En, i.e.,

Ii = (Lnext(i)−Li) mod 2c

where next(i)= (i+1)mod n. Denote by Imax =max{Ii}n
i=1 and Imin =min{Ii}n

i=1. We

select |k| locations for dynamic scaling, and ensure the following interval invariant:

Imax ≤ 2Imin, (4.1)

i.e., the maximum interval has size at most twice the size of the minimum one. As

will be seen shortly, this interval invariant will be used to bound both migration cost

Chapter 4. Approximation Algorithms 16

and replication factor. Note that the initial partition satisfies the interval invariant.

Starting from an evenly distributed placement of fragments, we will propose a strategy

to maintain the interval invariant during scaling.

(2) It then employs consistent hashing to update edge assignments as we did in the

initial partition construction.

(3) It restores balance via linear probing [Mirrokni et al., 2018] (see below).

We will see that when ε is not too small, BVC− and BVC+ guarantee bounds on

migration cost and replication factor.

Fragment placement. We use a stack to keep track of the order of locations when the

circle C is adjusted by removing or adding fragments. When we remove a fragment,

we remove the one on the top of the stack, and when we add a new fragment, we push

its location onto the stack.

Initial stack. The stack is initialized with the n fragments E1, . . . , En when the initial

partition is constructed. We decide a specific order such that we do not remove two

consecutive fragments at the same time when scaling in, since otherwise it may triple

the size of the intervals and violate the invariant. Indeed, the fragments are evenly

distributed on C , and the size of the smallest interval is d2c−1
n e. When we remove two

consecutive fragments, e.g., fragments located at id2c−1
n e and (i+1)d2c−1

n e, we get an

interval from (i− 1)d2c−1
n e to (i+ 2)d2c−1

n e, and its size is 3d2c−1
n e, which triples the

size of the smallest intervals.

More specifically, suppose that E1, . . . ,En are located in the clockwise order on

C . We start from E1, walk the circle clockwise, and pick every other fragment. We

proceed until no fragment is left. This yields an order E1,E3, . . . ,Et . We push their

locations onto the stack in the reverse order, i.e., E1 is on top of the stack, and Et is at

its bottom.

We next give our strategy to remove and add fragments.

Removing fragments. To remove |k| fragments from the circle C , we simply pop up |k|
locations from the stack one by one, and remove their corresponding fragments.

Adding fragments. To add a new fragment E ′, we find the largest interval on C , place

E ′ in the middle of the interval, and push the location of E ′ onto the stack. If there

exist multiple largest intervals of the same size, we randomly pick one. To add k

Chapter 4. Approximation Algorithms 17

Figure 4.1: Scaling in

fragments, we repeat the process k times.

Lemma 2: The interval invariant holds when fragments are added or removed as

described above. 2

Proof: We show that if the invariant holds before scaling, then it also holds after it.

Observe that after adding fragments, the size of the largest interval decreases; and

after removing fragments, the smallest interval increases. For scaling out, Imax ≤ 2Imin

because we bisect the largest interval, and obtain two smallest intervals. For scaling

in, we merge two smallest intervals and generate a largest one (see Appendix A.2 for

proof). 2

Example 3: Suppose that we initially have 8 fragments as shown in Fig. 4.1 (1). We

show how to remove 5 fragments.

(1) Based on the strategy, the fragments in Fig. 4.1 (1) are ordered as E1→ E3→ E5→
E7→ E2→ E6→ E4→ E8. We remove the first 5 fragments (E1,E3,E5, E7 and E2)

in the order, yielding Fig. 4.1 (2). The intervals have size 1
2 × 2c, 1

4 × 2c and 1
4 × 2c,

respectively. The invariant holds.

(2) One might want to remove fragments also by picking the smallest intervals. How-

ever, this may violate the invariant. For instance, if we remove fragments surrounded

by two minimum intervals, e.g., E2, E4 and E7 from Fig. 4.1 (1), we end up with

Fig. 4.1 (3), and can no longer remove more fragment without violating the invariant.

Indeed, if we further remove E1, we end up with Fig. 4.1 (4), in which the distance

between E8 and E3 triples the distance between E5 and E6. Removing other fragments

also inflicts violation. 2

We now present algorithms BVC+ and BVC− in Fig. 4.2.

Algorithm BVC+ Given Π(n), ε and k > 0, BVC+ extends Π(n) to Π(n+ k) in three

Chapter 4. Approximation Algorithms 18

Algorithm BVC+

Input: A partition Π(n) = (E1, . . . ,En) of G,

a number k > 0, and a balance factor ε.

Output: An ε-balanced new partition Π(n+ k) = (E1, . . . ,En+k).

/* Step (1): Adjust fragments on C */

1. identify k locations Ln+1, . . . , Ln+k for fragments to plug in;

2. add k new fragment such that En+ j at Ln+ j for j ∈ [1,k];

/* Step (2): Reallocate edges via consistent hashing */

3. for each e ∈
⋃n

i=1 Ei do

4. i∗ = next par(e.hash,C); /* find the next fragment on C */

5. if i∗ ∈ {n+1, . . . ,n+ k} then

6. move e to fragment Ei∗ ;

/* Step (3): Balancing */

7. w← d(1+ ε) |E|n+ke;
8. while there exists some Ei with |Ei|> w do

9. ∆Ei← select (|Ei|−w) edges from Ei;

10. Ei← Ei \∆Ei;

11. next← (i+1) mod n;

12. migrate ∆Ei to fragment Enext;

13. Enext← Enext∪∆Ei;

Algorithm BVC−

Input: A partition Π(n) = (E1, . . . ,En) of G,

a number 0 < k < n, and a balance factor ε.

Output: A new partition Π(n) = (E ′1, . . . ,E
′
n−k) of G.

1. identify and remove fragments E j1 , . . . E jk from C , using a stack;

2. for each edge e ∈
⋃k

i=1{E ji} do

3. i = next par(e.hash,C); /* find the next fragment on C*/

4. move e to Ei;

5. {E ′1,E ′2, . . . ,E ′n−k}← {E1, . . . ,En}\{E j1 , . . . ,E jk};
6. balance E ′1, . . . ,E

′
n−k by linear probing as in Algorithm BVC+;

Figure 4.2: Algorithm for scaling out/in

Chapter 4. Approximation Algorithms 19

steps. (1) It first adds new fragments on circle C as remarked earlier, maintaining the

interval invariant. (2) It then re-allocates edges by a degree-based approach to improve

locality, and maps edges to fragments as in consistent hashing. (3) Finally it adjusts

the partition to make it balanced. Steps (2) and (3) integrate consistent hashing [Karger

et al., 1997, Mirrokni et al., 2018] and the degree-based approach [Xie et al., 2014].

(1) It first identifies k locations with the placement strategy above, and adds k new

fragments at the locations (lines 1-2).

(2) It then identifies edges belonging to the new fragments based on consistent hashing

and moves them to the corresponding new fragments (lines 3-6).

(3) Finally, it applies linear probing [Mirrokni et al., 2018] to balance the partition

(lines 7-13). For each fragment Ei, if it is not balanced (|Ei|>d(1+ε) |E|n+ke), then it

forwards |Ei|−d(1+ε) |E|n+ke edges to the next fragment in the clockwise order.

Remark. (a) BVC+ terminates when all fragments are balanced. This is assured by that

each edge is migrated at most n+ k times, and at most |E| edges need to be moved.

(b) The initial partition step can be done by BVC+, denoted by BVC. Indeed, it is

a special case when the graph is given as a fragment, and BVC+ adds another n− 1

fragments.

Example 4: We show how BVC+ extends the partition Π(2) of Example 2 to a new

partition Π(5) = (E1, . . . ,E5). It first identifies 3 locations on circle C to place the

new fragments E3, E4 and E5. It then finds edges that belong to the new fragments,

and moves them to the right place (see Appendix A.3 for details). We get E1 =

{e1,1,e1,3,e2,2,e2,3}, E2 = {e2,4,e5,4,e5,5}, E3 = {e3,1,e3,2,e3,5}, E4 = {e4,1,e4,3,e5,2}
and E5 = {e5,3,e6,1,e6,5}. This yields balanced Π(5) of Fig. 1.1 (b). 2

Algorithm BVC− Given a balance factor ε, a number k such that−n<k<0, and a parti-

tion Π(n) = (E1, . . . ,En) of G such that Ei’s are placed on a unit circle C , BVC− adjusts

Π(n) to Π(n+k) as follows. It first identifies |k| fragments E j1 , . . . , E j|k| on the top of

the stack, and removes them from circle C (line 1). As assured by Lemma 2, after the

removal, the circle C still satisfies the interval invariant.

After these steps, BVC− remaps the edges in E j1 , . . . , E j|k| to the remaining frag-

ments based on consistent hashing (lines 2-4). More specifically, for each edge e in a

removed fragment, it finds the next fragment on C in the clockwise order (line 3) and

moves e to it (line 4). At last it balances the fragments via linear probing as in BVC+

Chapter 4. Approximation Algorithms 20

Figure 4.3: Scaling out

(lines 5-6).

Analysis. We show that when the balance factor is not too small, BVC+ and BVC−

guarantee bounds on both replication factor and migration cost. Since each edge is

hashed by its vertices, denote by hmax the maximum number of times of a vertex

used for hashing. Here hmax is usually much smaller than the maximum degree of the

graph, as for a vertex it is unlikely that most of its edges are hashed using its id.

Given k>−n, we have the following starting from an initial partition with BVC+,

in which β1
k=

8(n+k)hmax
|E| log((n+ k)

√
|E|+1), βk=

√
β1

k(
√

β1
k+
√

2), and θ = dmin×
α−1
α−2 − dmin× α−1

2α−3 +
1
2 , where dmin is the minimal node degree in a power-law graph,

and α is its power-law constant [Xie et al., 2014].

Theorem 3: If k >−n and ε > 1+2βk, then (1) the expected value of migration cost

when scaling out (resp. in) from Π(n) to Π(n+ k) via BVC+ (resp. BVC−) is at most

O(k |E|n+k) (resp. O(k |E|n)); and (2) the expected value of the replication factor is at most

(n+ k)(1−(1−2 1
n+k)

θ)+ 2
|V | . 2

Observe the following about Theorem 3.

(1) The lower bound βk for balance factor is not very restrictive, since in the real

world it is common to find that |E|�n. Taking Twitter as an example (see Chapter 6),

βk≤0.009 for n=64, where |E| is approximately 1.5 billion.

(2) Edge selection in linear probing affects neither migration cost [Mirrokni et al.,

2018] nor the upper bound for replication factor.

(3) The bound for migration cost holds on general graphs, but not the replication

factor fe. On a power-law graph G, fe of degree-bashed hashing would decrease when

G gets more skewed [Xie et al., 2014]; this does not hold on general graphs.

Chapter 4. Approximation Algorithms 21

Proof: We only give a proof sketch for the bounds for BVC−; the proof for BVC+ is

similar (see Appendix A.4 for details).

(1) The migration cost of BVC− includes (a) the cost of moving edges from removed

fragments to fragments that remain; and (b) the cost of rebalancing fragments. For

cost (a), since each fragment has at most d(1+ ε) |E|n e edges, and k fragments are re-

moved, at most O(k |E|n) edges are migrated. Thus the migration cost for (a) is bounded

by O(k |E|n).

For cost (b), we show that the expected number of edges in each fragment Ei to

be forwarded is bounded by O(1
n2), by using Bernstein’s inequality [Dubhashi and

Panconesi, 2009]. Since each edge can be forwarded at most n times, the migration cost

for balancing each fragment is at most O(1
n). Hence total migration cost for balancing

all n fragments is bounded by O(1).

(2) Suppose that Vi is the set of vertices contained in fragment Ei (i∈ [1,n]) after BVC−

terminates. To bound the replication factor, by its definition, we only need to bound the

expected value of |Vi| for all i ∈ [1,n]. Note that |Vi| can be bounded by the number of

vertices hashed to Ei plus the number of vertices forwarded to Ei during the rebalancing

step. The number of vertices hashed to Ei can be bounded by |E|(1− (1− 2
n−k)

θ)

using the technique of [Xie et al., 2014], since the fragments are such placed that the

invariant holds, and the probability that an edge is hashed to Ei is bounded by 2
n−k .

For the number of vertices forwarded to Ei, since the total number of forwarded edges

is bounded by O(1) as proved above, and each edge has two associated vertices, the

number of vertices forwarded to Ei can also be bounded. 2

4.3 Parallelization

Dynamic scaling has to be conducted in parallel. It starts with a partition when a graph

is already fragmented and distributed across a cluster of processors. To scale out/in, all

processors involved need to work together in parallel. Moreover, when dealing with

large graphs, it is not practical for a single-machine to compute a balanced partition.

In light of this, we next parallelize BVC+ and BVC−, and develop their parallel

versions ParBVC+ and ParBVC−, respectively. We show that these parallel algorithms

retain the same performance guarantees as their serial counterparts.

Parallel setting. Our parallel algorithms run in a shared-nothing distributed setting, as

Chapter 4. Approximation Algorithms 22

commonly used nowadays.

(a) Initially, a graph G = (V,E) is partitioned into n fragments E1,. . . , En, which are

distributed to n processors P1, . . . , Pn, respectively, referred to as workers.

(b) The workers run under the BSP model [Valiant, 1990], which separates scaling

into supersteps. In a superstep, each worker conducts computation of ParBVC+ or

ParBVC− to refine its own fragment and exchanges updates via messages.

(c) When adding or deleting |k| fragments (k>− n), |k| additional workers are added

or |k| existing workers are deleted.

Parallel algorithms. We only present ParBVC+; ParBVC− is similar. As opposed to

its serial counterpart (Section 4.2), the algorithm conducts in parallel (a) the compu-

tation of hash values and edge assignments, and (b) edge migration and linear probing

for load balancing, by all workers.

Algorithm ParBVC+. Given a partition Π(n) of G placed on a unit circle C , a balance

factor ε and a number k > 0, ParBVC+ scales out Π(n) to an ε-balanced partition

Π(n + k). Like BVC+, it first adds k new fragments on the circle C , maintaining

the interval invariant. It then identifies edges that belong to the new fragments by

consistent hashing, and migrates them to the corresponding fragments. As opposed to

BVC+, ParBVC+ does this in parallel: for each existing fragment Ei (0 < i < n), its

worker Pi identifies and moves out the related edges in Ei. Finally ParBVC+ balances

the resulting partition, in parallel via linear probing (see Appendix A.5 and A.6).

Analysis. We show that ParBVC+ retains the same bounds on replication and

migration cost as BVC+ (Theorem 3).

(a) Bounds for ParBVC+. Since ParBVC+ and BVC+ use the same hash function for

edges, the distribution of edges among fragments is the same for both ParBVC+ and

BVC+. Moreover, both algorithms maintain the same interval invariant (Lemma 2).

Hence the same bounds of Theorem 3 can be deduced for both of them, although

ParBVC+ migrates edges in parallel, while BVC+ does it sequentially.

(b) Running time. For BVC+, the migration cost is bounded by O(|k| |E|n+k). For

ParBVC+, the expected running time is in O(|E|n+k), since edge migration from existing

fragments to new ones dominates the cost, and ParBVC+ conducts it in parallel. By

Theorem 3, only a small number of edges need to be moved in the linear probing step

for rebalancing.

Chapter 5

A Generic Scaling Scheme

The approximation solution above requires an initial partition that places fragments on

a hash ring and satisfies the interval invariant. In practice, however, users often start

with a partition computed by a partitioning algorithm VP of their own choice. Is there

a method that scales any existing vertex-cut partitioner VP in response to load surges?

We next develop such a generic solution and show that it guarantees minimum

migration cost and a relative bound on partition quality (Section 5.1). As proof of

concept, we scale two existing vertex-cut partitioners (Section 5.2).

5.1 Dynamic Scaling Scheme

Given a vertex-cut partitioning algorithm VP, we deduce algorithms VP+ and VP−.

Given a n-partition Π(n) = (E1, . . . ,En) generated by VP and an integer k >−n, VP+

and VP− compute partition Π(n+ k) for scaling out and in, respectively, depending

on whether k > 0. To simplify the presentation, we assume w.l.o.g. that ε = 0 in this

section.

Scaling scheme. The scheme computes Π(n+ k) by selecting a minimum number

of edges to move, employing VP to re-assign these edges, and retaining the edge as-

signments of VP as much as possible. This allows us to minimize migration cost and

achieve partition quality comparable to VP. More specifically, VP+ and VP− work as

follows.

Scaling out. From each fragment Ei (i ∈ [1,n]), VP+ (a) selects a subset E ′i ⊆ Ei of

edges such that |E ′i |=
k|Ei|
n+k , and (b) applies VP to the set

⋃n
i=1 E ′i of all selected edges,

and obtains a k-partition (E ′′n+1, . . . ,E
′′
n+k). (c) These yield a (n+ k)-partition (E1 \

23

Chapter 5. A Generic Scaling Scheme 24

E ′i , . . . ,En \E ′n,E
′′
n+1, . . . ,E

′′
n+k).

That is, it employs the original partitioner VP to re-assign the selected edges. It

only moves edges from Ei to the k new fragments, not between existing fragments Ei

(i ∈ [1,n]).

Scaling in. VP− randomly selects |k| fragments Ei1 , . . . , Ei|k| to remove, and then

employs VP to reassign edges of
⋃|k|

j=1 Ei j to the remaining fragments E j1 , . . . , E jn+k .

VP+ and VP− incur the minimum migration cost, since they move the minimum

number of edges to make the new partition balanced with ε = 0. VP+ only moves

edges from original fragments to newly added ones, and VP− reassigns edges from

the removed fragments to the remaining ones. Neither moves edges among existing

fragments (see Appendix A.7 and A.8 for proofs of 4 and 5).

Proposition 4: Given a balanced partition Π(n), the migration cost of VP+ (resp.

VP−) is O(k|E|
n+k) (resp. O(|k||E|n)) when adding (resp. removing) |k| fragments. 2

One can show that VP+ and VP− generate partitions as balanced as Π(n), no

matter whether Π(n) is balanced.

Edges selection. We next show that the algorithms also offer relative bounds on repli-

cation factor f . Below we focus on VP+; the analysis of VP− is similar and simpler.

Observe that VP+ only selects edges from overfull fragments and moves them to

newly added ones. VP+ uses the following edge selection strategy: from each fragment

Ei (i ∈ [1,n]), VP+ selects k
n+k |Ei| edges from Ei such that the number of vertices on

the selected edges is minimum.

We now give an upper bound on the replication factor of VP+. Denote by τi the

average vertex degree in fragment Ei.

Proposition 5: The replication factor after VP+ is at most F +k · k
n+k

2|E|
min{τi}n

i=1·|V |
with

the edge selection strategy above. Here min{τi}n
i=1 is the minimum average vertex

degree of all fragments, and F is the replication factor before scaling. 2

Proof: This is deduced from the following: (a) the replication factor of the original

fragments after the scaling is at worst F ; (2) the number of vertices on selected edges

from fragment Ei is at most k
n+k

2|Ei|
τi

; and (3) each selected vertex can be assigned to at

most k new fragments. 2

In practice, the replication factor is expected to be better than this upper bound, be-

cause (1) when we remove edges from a fragment Ei, its replication factor is decreased

and is often smaller than F ; and (2) when we use VP to distribute the selected edges,

Chapter 5. A Generic Scaling Scheme 25

the replication factor of the new fragments is often smaller than the second term in

Proposition 5 since each vertex unlikely appears in all new fragments.

5.2 Scaling Stream Partitioners

As case studies, we next scale HDRF [Petroni et al., 2015] and Greedy (Power-

graph [Gonzalez et al., 2012]), two well-known vertex-cut partitioners. Consider a

current vertex-cut partition Π(n) = (E1, . . . ,En).

Both partitioning algorithms are stream-based, which processes edges in a one-

pass fashion. Consider a vertex-cut partition Π(n) = (E1, . . . ,En) generated so far. An

incoming edge e is assigned to a fragment Ei based on scores S(e,Ei)(i ∈ [1,n]), which

aggregates edges assigned to Ei so far. More specifically, edge e is assigned to Ei∗ ,

where

i∗ = argmaxi∈{1,...,n}S(e,Ei),

i.e., the fragment that maximizes the score. Partitioners HDRF and Greedy use different

score functions.

HDRF. We start with HDRF, which favors replicating vertices with relatively large

degrees. Given an edge e = (u,v), it computes a score S(u,v,Ei) w.r.t. each fragment

Ei:

S(u,v,Ei) = SREP(u,v,Ei)+SBAL(Ei), (5.1)

where SREP(u,v,Ei) is a replication score of e w.r.t. Ei and SBAL(Ei) is a balance score

of Ei, defined as follows. To replicate vertices with higher degrees first, HDRF defines

SREP(u,v,Ei) = g(u,v,Ei)+g(v,u,Ei), where

g(v,u,Ei) =

{
1+ deg(u)

deg(v)+deg(u) if v ∈Vi,

0 otherwise.

Here deg(u) and deg(v) are the degrees of u and v, respectively. The balance score

SBAL(Ei) is defined as

SBAL(Ei) = λ
MAXSIZE−|Ei|

1+MAXSIZE−MINSIZE
,

where λ is a user-defined parameter that controls the impact of the balance score, and

MAXSIZE and MINSIZE are the maximum and minimum sizes of all fragments when

processing edge e. HDRF sets the default value of λ as 2.

Chapter 5. A Generic Scaling Scheme 26

Edge selection of HDRF. We focus on edge selection for scaling out, since there is

no much flexibility for scaling in. A naive method is to randomly select edges from

overfull fragments. However, this usually leads to degeneration of partition quality.

Instead, we introduce two strategies based on score and timestamp of stream HDRF.

(1) Score based. Intuitively, a larger HDRF score S(e,Ei) of e indicates better locality

of e w.r.t. fragment Ei. Hence it is natural to move out edges with relatively lower

scores. However, we cannot simply use the score assigned to e when it comes in, since

it only reflects the fragment information at that moment. Hence for each edge e, we

compute a new score S(e,Ei \{e}) by treating e as a new edge for Ei. Edges with

relatively lower new scores are selected for scaling out.

(2) Timestamp based. Intuitively, edges that are processed earlier are more likely to be

assigned to “wrong” fragments, since their scores are computed with less information

and may not be accurate. In HDRF, deg(u) and deg(v) used in the score function

cannot be computed in advance and thus are approximated by their partial degrees,

i.e., the number of processed edges that are attached to u and v, respectively. The

degrees used in the score computation for earlier edges are not as accurate as those of

later edges.

This suggests that we revise the assignment of early coming edges and retain the

assignment of later ones. Hence when running HDRF, we associate with each edge e a

timestamp recording when it is added to its fragment. We select edges with relatively

smaller timestamp for scaling out.

Based on these, we deduce HDRF+ and HDRF− as follows.

HDRF+. From each fragment Ei, HDRF+ selects k
n(n+k) |Ei| edges based on one of the

edge selection strategies above. It merges these edges as a new stream and invokes

HDRF to assign these edges to the k newly added fragments.

HDRF−. This case is simpler. HDRF− randomly selects |k| fragments and merges

their edges as a new stream. It then uses HDRF to reassign the edges to the remaining

fragments.

As will be demonstrated in Chapter 6, HDRF+ and HDRF− scale partition with

quality comparable to re-partitioning the entire graphs by HDRF starting from scratch,

while they incur the minimum migration cost (Proposition 4).

Replication factor. We show that with the two simple edge-selection strategies above,

HDRF+ still guarantees bounded replication factor relative to partitioner HDRF.

Chapter 5. A Generic Scaling Scheme 27

We use the following notations. Denote by (a) E ′1, . . . ,E
′
n the sets of edges selected

from partition (E1, . . . ,En) by one of the strategies; (b) E ′′1 , . . . ,E
′′
n the edges remain-

ing in the n fragments; and (c) f ′ and f ′′ the replication factor of (E ′1, . . . ,E
′
n) and

(E ′′1 , . . . ,E
′′
n), respectively.

Observe that f ′′ is at least as good as the replication factor of the original

(E1, . . . ,En). For the k new fragments, we show that the replication factor is com-

parable to f ′. To simplify the analysis, we adopt λ = 1 as in [Petroni et al., 2015].

Proposition 6: The replication factor after HDRF+ is bounded by (1) f ′′+ 2k2

n+k |E|
with the score-based strategy, and (2) f ′+ f ′′+ k

n+k
|E|
|V |−

|V1|
2·|V | for timestamp-based when

λ = 1, where V1 is the number of vertices in the selected edges. 2

Proof: We verify statement (1); the proof for statement (2) is similar (see Ap-

pendix A.9). Observe that the replication factor of the resulting partition is the sum

of the replication factor of n remaining fragments Π(n)′ = (E ′′1 , . . . ,E
′′
n) and that of

the partition Π(k) of k new fragments with edges E ′1, . . . ,E
′
n. The replication factor of

Π(n)′ is at worst f ′′. From a detailed analysis of the new score S(e,Ei \{e}) it follows

that the replication factor of Π(k) is bounded by 2k2

n+k |E|. 2

Greedy. Greedy is a stream-based partitioner adopted by Powergraph [Gonzalez et al.,

2012]. It can be seen as a special case of HDRF. It also uses Eq. (5.1) to compute edge

scores. It differs from HDRF in that it (a) uses 1 as the default value for λ to balance

score; and (b) it does not include the impact of degrees in the replication score and

defines g(v,u,Ei) by

g(v,u,Ei) =

{
1 if v ∈Vi,

0 otherwise.
The edge selection strategies for HDRF also work for Greedy. Denote by Greedy+ and

Greedy− the scaling algorithms deduced from Greedy along the same lines. Then the

bounds for migration cost and replication factor of HDRF+ and HDRF− also hold on

Greedy+ and Greedy−, respectively.

Parallelization. Following [Sajjad et al., 2016], we parallelize HDRF+ and HDRF−

(resp. Greedy+ and Greedy−) in a mini-batch fashion as follows. Each worker main-

tains a shared state that includes the information of degrees and locations of processed

vertices. The edge assignment is conducted in rounds. In a round, each worker han-

dles a small batch of edges in parallel, as in HDRF or Greedy; workers communicate

with each other at the end of each round to synchronize the shared state. The process

terminates when all edges are processed.

Chapter 6

Experimental Study

Using real-life and synthetic graphs, we conducted four sets of experiments to evaluate

our scaling algorithms for their (1) efficiency, (2) partition quality, (3) scalability, and

(4) impact on the performance of graph analysis tasks.

Experimental setting. We start with the setting.

Datasets. We used three real-life power-law graphs: (a) PLD [Meusel et al., 2014],

an undirected graph with 39 million nodes and 623 million edges, in which each node

represents a pay-level domain and each edge indicates a hyperlink between a pair of

domains; (b) Twitter [Kwak et al., 2010], a social network with 42 million users and

1.5 billion links; and (c) UKWeb [ukw, 2006], a large Web graph with 106 million

nodes and 3.7 billion edges.

We also generated synthetic graphs with size up to 440 million vertices and 14

billion edges, to test scalability.

Algorithms. We implemented approximate ParBVC− and ParBVC+ (Chapter 4), and

parallel HDRF+, HDRF−, Greedy+ and Greedy− (Chapter 5), all in C++, compared

with the following: (1) CH [Karger et al., 1997], a consistent-hashing partitioner;

in contrast to ParBVC+ and ParBVC−, CH takes edge id as hashing key and hashes

fragments to a unit circle; it also uses a virtual-sever method to balance load; (2)

2DHash [Xin et al., 2013], a widely used hash-based vertex partitioner; (3) Libra [Xie

et al., 2014], a state-of-the-art degree-based hashing algorithm; and (4) vertex parti-

tioners HDRF and Greedy (Chapter 5). Since 2DHash, Libra, HDRF and Greedy do not

support dynamic scaling, we mainly consider their partition quality.

To evaluate the effectiveness of our edge selection strategies of our generic scal-

ing scheme, we implemented variants of HDRF+ and Greedy+, also in C++. Denote

28

Chapter 6. Experimental Study 29

ParBVC
+/-

CH

2DHash

Libra

HDRFT
+

GreedyT
+

HDRFS
+

GreedyS
+

HDRFR
+

GreedyR
+

HDRF
-

Greedy
-

HDRF

Greedy

LEC

 2

 4

 8

 16

 32

 64

 128

20 40 60 80 100

T
im

e
(s

)

(a) Varying k (scale out, UKWeb)

 3

 9

 27

 81

20 40 60 80 100

T
im

e
(s

)

(b) Varying k (scale out, Twitter)

 1

 2

 4

 8

 16

 32

20 40 60 80 100

T
im

e
(s

)

(c) Varying k (scale out, PLD)

 2

 4

 8

 16

 32

 64

 128

10 20 30 40 50

T
im

e
(s

)

(d) Varying k (scale in, UKWeb)

 4

 8

 16

 32

 64

 128

20 40 60 80 100

T
im

e
(s

)

(e) Varying k (n = 48, UKWeb)

 16

 32

 64

 128

 256

32 64 96 128 160

T
im

e
(s

)

(f) Varying k� n (UKWeb)

 2

 4

 8

 16

 32

 64

 128

32 64 96 128 160

T
im

e
(s

)

(g) Varying n (scale out, UKWeb)

 2

 4

 8

 16

 32

 64

 128

32 64 96 128 160

T
im

e
(s

)

(h) Varying n (scale in, UKWeb)

 3

 9

20 40 60 80 100

R
ep

li
ca

ti
o

n
 F

ac
to

r
(i) Varying k (scale out, UKWeb)

 2

 4

 8

10 20 30 40 50

R
ep

li
ca

ti
o

n
 F

ac
to

r

(j) Varying k (scale in, UKWeb)

 3

 9

20 40 60 80 100

R
ep

li
ca

ti
o

n
 F

ac
to

r

(k) Varying k (n = 48, UKWeb)

 2

 4

 8

32 64 96 128 160

R
ep

li
ca

ti
o

n
 F

ac
to

r

(l) Varying k� n (UKWeb)

 2

 4

 8

32 64 96 128 160

R
ep

li
ca

ti
o

n
 F

ac
to

r

(m) Varying n (scale out, UKWeb)

 2

 4

 8

32 64 96 128 160

R
ep

li
ca

ti
o

n
 F

ac
to

r

(n) Varying n (scale in, UKWeb)

Figure 6.1: Performance Evaluation

Chapter 6. Experimental Study 30

by HDRF+S and HDRF+T the implementations of HDRF+ with edge selection based on

score and timestamp, respectively; similarly for Greedy+S and Greedy+T . The results

reported for HDRF+ and Greedy+ take the average of two strategies. We also imple-

mented a strategy that randomly chooses edges for scaling out, denoted by HDRF+R

and Greedy+R , respectively. We parallelized the algorithms as described in Section 5.2.

The mini-batch size is set to 256 by default.

The experiments were conducted on GRAPE, a parallel graph processing en-

gine [Fan et al., 2017], deployed on an HPC cluster of up to 36 machines, each with 12

cores powered by Intel Xeon 2.2GHz and 128GB memory, with a 10Gbps link between

machines. In the experiments, each fragment was handled by one process that ran on

an exclusive core. Each experiment was repeated 5 times; the average is reported here.

Experimental results. We next report our findings.

Exp-1: Efficiency. We first evaluated the scaling time and migration cost of the algo-

rithms. For ParBVC+ and ParBVC−, we set balance factor ε= 0.1; the other algorithms

do not take ε as a hard constraint on load balance.

Varying k. Fixing n = 96, we varied k from 20 to 100 (resp. 10 to 50) for scaling out

(resp. in). We find the following.

(1) As shown in Figures 6.1(a)-6.1(c), ParBVC+ performs the best in time efficiency.

It outperforms CH, HDRF+ and Greedy+ by 2.7, 20.3 and 18.5 times, respectively, up

to 3.4, 36.1 and 33.1 times. All algorithms take longer when k gets larger, as expected.

However, ParBVC+ and CH are less sensitive to the change of k than HDRF+ and

Greedy+, since they incur less synchronization overhead during scaling.

(2) 2DHash, Libra, HDRF and Greedy do not support dynamic scaling, and have to

re-partition graphs. ParBVC+ is 8.9, 7.4, 926.5 and 763.6 times faster than these

methods, respectively, up to 13.1, 11.2, 1406.8 and 1224.8 times (not shown). This is

because the re-partitioning methods need to (a) recompute edge assignments, and (b)

move most edges (their migration cost is 2.9 times larger than ParBVC+).

(3) The results for scaling in are consistent with scaling out. As shown in Fig. 6.1(d),

on average ParBVC− outperforms CH, HDRF− and Greedy− on UKWeb by 2.7, 18.6

and 17.4 times, respectively, up to 3.1, 26.7 and 27.8 times. The results on Twitter

and PLD are consistent (not shown).

(4) CH incurs larger migration cost, on average 1.1 (resp. 1.2) times more than

Chapter 6. Experimental Study 31

ParBVC+ (resp. ParBVC−). It is 2.7 (resp. 2.7) times slower than ParBVC+

(resp. ParBVC−) (see (1)), since CH generates unbalanced partitions (Exp-2), which

yield stragglers and slow down scaling. This verifies the effectiveness of our fragment

placement strategy (Section 4.2).

(5) HDRF+ and Greedy+ (resp. HDRF− and Greedy−) incur minimum migration cost.

These are 1.37 and 1.37 (resp. 1.40 and 1.40) times better than ParBVC+ (resp.

ParBVC−) on average, respectively. Nevertheless, they are slower than ParBVC+ and

ParBVC−. This is because during scaling they need to (a) compute the score w.r.t. all

fragments to decide the assignment of an edge, and (b) synchronize shared state.

(6) HDRF+ and Greedy+ are on average 53.1 and 46.1 times faster than HDRF and

Greedy, respectively. However, they take longer than hash-based CH for the same

reason given in (5) above; similarly for HDRF− and Greedy−.

(7) We also evaluated the impact of different initial partition numbers n. Fixing n = 48,

we varied k from 20 to 100 (resp. 10 to 40) for scaling out (resp. scaling in). As

shown in Fig. 6.1(e) on UKWeb, its scaling-out performance pattern is consistent with

Fig. 6.1(a) when n = 96. The (scaling-in) results on Twitter and PLD are consistent

(not shown).

Varying k� n. Fixing n = 32, we varied k from 32 to 160 on UKWeb to evaluate

scaling-out algorithms when k�n. As shown in Fig. 6.1(f), the results are consistent

with Figures 6.1(a)–6.1(c). (a) When k gets larger, all algorithms take longer. (b)

ParBVC+ is on average 2.4, 20.4 and 19.6 times faster than CH, HDRF+ and Greedy+,

respectively. (c) HDRF+ and Greedy+ beat HDRF and Greedy by 16.9 and 15.4 times,

respectively. (d) ParBVC+ beats re-partitioning methods 2DHash, Libra, HDRF and

Greedy by 10.3, 8.4, 348.4 and 302.5 times, respectively. (e) ParBVC+ and CH are not

as sensitive to k as HDRF+ and Greedy+, since they are easy to parallelize and incur

less synchronization cost. The (scaling in) results on Twitter and PLD are consistent.

Varying n. Fixing k/n = 1/3, we varied n from 32 to 160 on UKWeb. The results on

Twitter and PLD are consistent.

As shown in Fig. 6.1(g), (1) ParBVC+ beats CH, HDRF+ and Greedy+ by 2.8, 18.5

and 17.4 times on average, respectively. (2) HDRF+ and Greedy+ are 59.4 and 54.9

times faster than HDRF and Greedy, respectively (HDRF and Greedy are not shown).

(3) When n is larger, all algorithms take less time. (4) HDRF+ and Greedy+ are not

very sensitive to n as when n increases, so does their communication cost. ParBVC+

Chapter 6. Experimental Study 32

and CH have better parallel scalability: they are 4.3 and 3.4 times faster when n varies

from 32 to 160, respectively. This is because (a) consistent hashing reduces migration

cost; and (b) the hash computation can be efficiently parallelized.

As shown in Fig. 6.1(h), the results for scaling in are consistent with Fig. 6.1(g).

In particular, ParBVC− outperforms CH, HDRF− and Greedy− by 2.9, 19.5 and 18.4

times on average, respectively. When n increases from 32 to 160, ParBVC− and CH

are 5.3 and 3.6 times faster, respectively.

Exp-2: Partition quality. We next evaluated (a) the replication factor f , (b) balance

factor ε. We also evaluated (c) the effectiveness of the edge selection strategies

(Section 5.2) for stream partitioners (see Appendix A.10). We used UKWeb; the

results on Twitter and PLD are consistent (not shown).

Replication factor. In the same setting as Exp-1, Figures 6.1(i)-6.1(n) report replica-

tion factors of the algorithms.

(1) Varying k. As shown in Fig. 6.1(i), the replication factors of all algorithms for

scaling out become larger when n or k increases. Moreover, observe the following.

(a) HDRF+T has the best replication factor among the scaling out algorithms over all

datasets. On average, it outperforms HDRF+S , Greedy+T , Greedy+S , ParBVC+ and CH

by 1.1, 1.2, 1.4, 1.8 and 5.9 times, respectively, up to 1.2, 1.3, 1.6, 2.8 and 10.4 times.

When k = 100, HDRF+T beats these algorithms. by 1.2, 1.3, 1.5, 2.7 and 10.4 times,

respectively. That is, HDRF+T performs well even when the configuration is changed

substantially (when k > n). This is because HDRF+T (i) retains data locality as HDRF

by assigning edges to where their vertices are located and cutting vertices with large

degrees; and (ii) rectifies “bad edge assignments” by reassigning edges based on the

information of graphs.

(b) HDRF+T also does better than re-partitioning algorithms Libra, 2DHash and Greedy

on average by 1.8, 2.5 and 1.3 times, respectively. It is even better than HDRF in most

cases, which re-partitions graphs starting from scratch. This is because (i) early incom-

ing edges incur bad locality since their assignments by HDRF use little information of

graphs; and (ii) HDRF+T utilizes more information, e.g., the degrees of processed ver-

tices, and rectifies the “bad” assignments when scaling out. This shows that our generic

scaling scheme does not come with a price of partition quality.

(c) The replication factor of CH is on average larger than 20 (not shown). ParBVC+

Chapter 6. Experimental Study 33

and Libra have comparable replication factors, since both of them employ a degree-

based approach and hence retain good locality. On average, they outperform other

hash-based algorithms CH and 2DHash by 3.4 and 1.4 times, respectively, up to 3.8

and 1.6 times.

(d) The results of scaling in are consistent. As shown in Fig. 6.1(j), on average HDRF−

outperforms Greedy−, ParBVC−, CH, Libra, 2DHash, HDRF and Greedy by 1.3, 2.3,

8.8, 2.4, 3.5, 1.1 and 1.4 times, respectively. As opposed to scaling out, the replication

factors of all algorithms for scaling in decrease when k increases.

(e) The timestamp based edge selection strategy works the best. On average the

replication factor of HDRF+T (resp. Greedy+T) is 1.1 and 1.4 (resp. 1.1 and 1.2) times

better than HDRF+S and HDRF+R (resp. Greedy+S and Greedy+R) (see Appendix A.10).

(f) As in Exp-1, we also tested the case when n = 48. As shown in Fig. 6.1(k), the

results are consistent with Fig. 6.1(i). This shows that our algorithms have a stable

performance pattern regardless of the initial partition number n.

(2) Varying k � n. As in Exp-1, we also set n = 32 and varied k from 32 to 160.

As shown in Fig. 6.1(l), the replication factors of all scaling-out algorithms except the

stream-based variants, i.e., HDRF+, HDRF+R , Greedy+, and Greedy+R , increase when

k gets larger. (a) When k varies from 32 to 160, the replication factor of HDRF+

increases from 2.8 to 3.0. It beats Greedy+, ParBVC+, CH, Libra and 2DHash by

1.2, 2.5, 8.9, 2.5 and 3.7 times, respectively. (b) The replication factors of HDRF+,

HDRF+R , Greedy+ and Greedy+R get slightly smaller when k > 96. This is because

(i) when k > 96, most of edges have to be moved; (ii) these algorithms rectify edges

assignment during scaling. (c) HDRF+ (resp. Greedy+) has comparable replication

factor to HDRF (resp. Greedy).

(3) Varying n. Fixing k/n = 1/3, as shown in Figures 6.1(m) and 6.1(n), the replication

factors of all algorithms become larger when n increases. (a) When n varies from

32 to 160, the replication factor of HDRF+ varies from 2.6 to 3.2. On average it

beats Greedy+, ParBVC+, CH, Libra and 2DHash by 1.3, 2.6, 9.0, 2.6 and 3.9 times,

respectively. (b) The results for scaling in are consistent. On average, HDRF− beats

Greedy−, ParBVC−, CH, Libra, 2DHash and Greedy by 1.3, 2.3, 7.7, 2.3, 3.4 and 1.4

times, respectively. (c) HDRF+ and HDRF− achieve replication factors comparable to

HDRF.

Chapter 6. Experimental Study 34

Alg/Dataset UKWeb Twitter PLD

ParBVC+ 0.1 0.1 0.1

HDRF+ 0.003 < 0.001 < 0.001

HDRF 0.043 < 0.001 < 0.001

Greedy+ 0.085 0.013 0.023

Greedy 0.503 0.201 0.119

CH 3.21 3.06 3.15

Libra 0.012 0.008 0.011

2DHash 1.13 1.16 1.04

Table 6.1: Balance factor

Balance factor. We next evaluated the balance factor. Table 6.1 shows the balance

factors for scaling out when n = 96 and k = 40 on average over the three real-life

graphs.

(1) HDRF+ does the best in most cases. Its balance factor is as small as 0.003. The

balance factor of Greedy+ varies from 0.001 to 0.095. It is not as balanced as HDRF+

since (a) it puts less weight on balance score than HDRF+ (see Section 5.2) and (b)

it may assign edges based on high-degree vertices and cut vertices with relatively low

degree. Even so, Greedy+ still does better than Greedy in balance.

(2) ParBVC+ enforces a user-defined balance factor ε = 0.1 by its rebalancing stage

(Section 4.2). In contrast, CH and 2DHash have ε as large as 3.46, respectively, and

1.16. Libra has a smaller ε, but it is not efficient as ParBVC+ (Exp-1).

(3) The balance factor of CH is much worse than ParBVC+, from 23.1 to 34.6 times,

since it uses hash function to place fragments and its virtual-server strategy does not

improve balance much when m� n, i.e., when there are far more edges than fragments

as found in our setting. This verifies the benefit of our fragment placement strategy.

(4) The results for scaling in are consistent (not shown). HDRF− achieves the best

balance factor in most cases, while ParBVC− guarantees a user-defined balance factor.

We also evaluated the impact of user-imposed balance factor by setting ε = 0.1 and

0.3 for ParBVC+ and ParBVC− (not shown). (1) With larger ε, both get slightly better

replication factors f . (2) Smaller ε incurs larger migration cost. When n = 96 and

k = 40, the migration cost of ParBVC+ over UKWeb increases from 0.26|E| to 0.34|E|
when ε varies from 0.3 to 0.1, since more data needs to be shipped for smaller ε. The

results of ParBVC− are consistent.

Edge-cut partitions. We also compared with LEC [Pujol et al., 2010], a scaling algo-

Chapter 6. Experimental Study 35

ParBVC
+/-

CH

2DHash

Libra

HDRFT
+

GreedyT
+

HDRFS
+

GreedyS
+

HDRFR
+

GreedyR
+

HDRF
-

Greedy
-

HDRF

Greedy

LEC

 10

 100

 1000

 10000

20 40 60 80 100

T
im

e
(s

)

(a) Edge-cut vs vertex-cut (time)

 3

 9

20 40 60 80 100

R
ep

li
ca

ti
o

n
 F

ac
to

r

(b) Edge-cut vs vertex-cut (f)

 5

 25

 125

G1 G2 G3 G4 G5

T
im

e
(s

)

(c) Scalability (scale out)

 5

 25

 125

G1 G2 G3 G4 G5

T
im

e
(s

)

(d) Scalability (Scale in)

 50

 100

 200

 400

 800

32 64 96 128 160

T
im

e
(s

)

(e) App evaluation (PageRank)

 20

 40

 80

 160

 320

 640

32 64 96 128 160

T
im

e
(s

)

(f) App evaluation (SSSP)

Figure 6.2: Performance Evaluation

rithm for edge-cut partitions. Following [Zhang et al., 2017], we deduced a vertex-cut

partition from an edge-cut partition, and computed its replication factor accordingly.

The results on UKWeb are shown in Figures 6.2(a) and 6.2(b). (1) When k or n

increases, the replication factor of LEC also increases. When k varies from 20 to 100

(resp. 10 to 50), the replication factor of LEC varies from 6.4 to 7.7 (resp. 4.9 to 5.9).

It is slight better than ParBVC+ (resp. ParBVC−), but is much worse than HDRF+ and

Greedy+ (resp. HDRF− and Greedy−). On average the replication factor of LEC is

2.3 (resp. 2.2) times larger than HDRF+ (resp. HDRF−). (2) Its scaling time is much

larger than our algorithms. On average it is 2188.6, 87.6 and 93.8 times slower than

ParBVC+, HDRF+ and Greedy+, respectively. This is because LEC migrates vertexes

and edges greedily, and is hard to parallelize. (3) Edge balancing of LEC is much worse

than our algorithms, varying from 0.8 to 1.7, since LEC focuses on vertex balance only.

Due to its imbalance, graph processing takes longer on partitions computed by LEC.

On average, PageRank with LEC is 1.5, 3.7 and 2.9 times slower than with ParBVC+,

HDRF+ and Greedy+, respectively.

Exp-3: Scalability. Fixing n=320 and k=110, we varied the size |G|=(|V |, |E|) of

synthetic graphs from (88M,2.8B) to (440M,14B) to test the scalability of the algo-

rithms.

Chapter 6. Experimental Study 36

As shown in Fig. 6.2(c)-6.2(d), (1) ParBVC+ and ParBVC− scale well with |G|.
When G varies from (88M, 2.8B) to (440M, 14B), ParBVC+ (resp. ParBVC−) takes

1.99s to 9.45s (resp. 2.15s to 11.37s), almost linear with |G|. On average, ParBVC+

beats CH, HDRF+ and Greedy+ by 4.5, 46.1 and 43.3 times, respectively. ParBVC−

beats CH, HDRF− and Greedy− by 2.9, 46.6 and 42.9 times, respectively. (2) CH scales

almost as well as ParBVC+ and ParBVC−, since they all employ consistent hashing.

(3) Although the efficiency of HDRF+ and Greedy+ is not as good as that of ParBVC+,

they scale well; their computation and communication costs are linear with |G|. When

|G| increases 5 times, running time of HDRF+ (resp. Greedy+) increases 4.9 (resp. 5.1)

times.

Exp-4: Impact on graph analysis tasks. To further evaluate the effectiveness of

our scaling algorithms, we tested the execution time and communication cost of two

standard graph analysis tasks, PageRank and SSSP (single source shortest path), over

the partitions obtained by our scaling algorithms. Fixing k/n= 1/3 and varying n from

32 to 160, we report their performance on UKWeb; the results on Twitter and PLD are

consistent (not shown). We do not report the time that is longer than 1000 seconds.

(1) As shown in Figures 6.2(e)-6.2(f), (a) when n gets larger, PageRank and SSSP

get faster on UKWeb with all partitioning algorithms. (b) Pagerank (resp. SSSP) with

HDRF+ is 1.3, 1.3, 2.5, 5.3, 2.6 and 16.9 (resp. 1.2, 1.3, 3.0, 6.4, 2.8 and 22.9) times

faster than with Greedy+, Greedy, ParBVC+, 2DHash, Libra and CH on average, re-

spectively. (c) ParBVC+ and Libra have similar effectiveness since they have compa-

rable replication and balance factors. On average, PageRank and SSSP with these two

are 4.5 and 4.9 times faster than with the other hash-based partitioners, respectively.

(2) Pagerank (resp. SSSP) with HDRF+ incurs less communication costs (not shown),

and ships 71.9%, 73.4%, 28.5%, 20.4%, 28.1% and 11.3% (resp. 74.4%, 72.9%,

26.7%, 17.3%, 25.9% and 7.5%) of data shipped with Greedy+, Greedy, ParBVC+,

2DHash, Libra and CH on average, respectively.

Summary. We find the following. (1) Algorithms ParBVC+ and ParBVC− perform

the best in efficiency. ParBVC+ outperforms CH, Libra, 2DHash, HDRF+ and Greedy+

by 2.7, 8.7, 10.8, 20.4 and 18.9 times on average. When n=96 and k=100, it is

2.6, 7.1, 8.4, 26.5 and 24.2 times faster. ParBVC− is 2.8, 10.3, 12.2, 18.5 and 17.9

times faster than CH, Libra, 2DHash, HDRF− and Greedy−, respectively. Algorithms

HDRF+ and Greedy+ (resp. HDRF− and Greedy−) are 43.8 and 40.1 times (resp. 43.7

Chapter 6. Experimental Study 37

and 41.2) faster than HDRF and Greedy on average, respectively, up to 114.7 and 106.6

times (resp. 129.8 and 132.3). (2) Our algorithms achieve good partition quality. In

the same setting as (1), ParBVC+ (resp. ParBVC−) does better than hash-based CH

and 2DHash in replication factor by 3.37 and 1.45 (resp. 3.56 and 1.52) times on

average, and 17.7 (resp. 24.6) times in balance factor on average. HDRF+ and HDRF−

(resp. Greedy+ and Greedy−) have replication and balance factors comparable to re-

partitioning with HDRF (resp. Greedy). HDRF+ (resp. HDRF−) does even better than

ParBVC+ (resp. ParBVC−) in partition quality, but not as fast. (4) Our algorithms

have stable performance and scale well with large n, k and graphs. On graphs with 440

million vertices and 14 billion edges, ParBVC+, HDRF+ and Greedy+ (resp. ParBVC−,

HDRF− and Greedy−) take 9.45s, 427.2s and 413.5s (resp. 11.37s, 490.6s and 453.8s),

when n=320 and k>n
3 . (5) Graph analysis tasks work well with partitions generated

by our scaling algorithms. PageRank (resp. SSSP) over HDRF+ is on average 4.9

(resp. 6.3) times faster. Moreover, PageRank (resp. SSSP) with HDRF+ ships 38.9%

(resp. 37.5%) data shipped by the others on average.

Chapter 7

Conclusion

To the best of our knowledge, this work is a first systematic study of dynamic scaling

for parallel graph computations. We have provided (a) the complexity of the problem

and its dominating factor, (b) parallel approximate algorithms with provable bounds

on migration cost and partition quality, and (c) the first generic scheme for scaling

existing vertex partitioners with (relative) bounds. Our empirical study has verified

that the solutions are promising.

One topic for future work is to adapt the methods to edge-cut and improve the

bounds. Another topic is to study online scaling, to adjust partitions in response to

load surges without interrupting ongoing computations.

38

Bibliography

[ukw, 2006] (2006). UKWeb. http://law.di.unimi.it/webdata/uk-union-2006-06-2007-

05.

[Andreev and Racke, 2006] Andreev, K. and Racke, H. (2006). Balanced graph

partitioning.TCS, 39(6).

[Bourse et al., 2014] Bourse, F., Lelarge, M., and Vojnovic, M. (2014). Balanced

graph edge partition. In SIGKDD, pages 1456–1465.

[Byers et al., 2003] Byers, J. W., Considine, J., and Mitzenmacher, M. (2003). Simple

load balancing for distributed hash tables. In IPTPS, pages 80–87.

[Chen et al., 2015] Chen, R., Shi, J., Chen, Y., and Chen, H. (2015). PowerLyra:

Differentiated graph computation and partitioning on skewed graphs. In EuroSys,

pages 1:1–1:15.

[Chieu et al., 2009] Chieu, T. C., Mohindra, A., Karve, A. A., and Segal, A.

(2009). Dynamic scaling of Web applications in a virtualized cloud computing

environment. In ICEBE, pages 281–286.

[Curino et al., 2010] Curino, C., Jones, E., Zhang, Y., Wu, E., and Madden, S. (2010).

Relational cloud: The case for a database service. New England Database Summit,

pages 1–6.

[Dai et al., 2017] Dai, D., Zhang, W., and Chen, Y. (2017). IOGP: An incremental

online graph partitioning algorithm for distributed graph databases. In HPDC,

pages 219–230.

[DeCandia et al., 2007] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G.,

Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., and Vogels, W.

(2007). Dynamo: Amazon’s highly available key-value store. In ACM SIGOPS

operating systems review, volume 41, pages 205–220. ACM.

39

Bibliography 40

[Dubhashi and Panconesi, 2009] Dubhashi, D. P. and Panconesi, A. (2009). Con-

centration of measure for the analysis of randomized algorithms. Cambridge

University Press.

[Fan et al., 2017] Fan, W., Wu, Y., Xu, J., Yu, W., Jiang, J., Zheng, Z., Zhang, B.,

Cao, Y., and Tian, C. (2017). Parallelizing Sequential Graph Computations. In

SIGMOD, pages 495–510.

[Garey and Johnson, 1979] Garey, M. and Johnson, D. (1979). Computers and

Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and

Company.

[Goldschmidt and Hochbaum, 1994] Goldschmidt, O. and Hochbaum, D. S. (1994).

A polynomial algorithm for the k-cut problem for fixed k. Math. Oper. Res.,

19(1):24–37.

[Gonzalez et al., 2012] Gonzalez, J. E., Low, Y., Gu, H., Bickson, D., and Guestrin,

C. (2012). PowerGraph: Distributed graph-parallel computation on natural graphs.

In OSDI, pages 17–30.

[Huang and Abadi, 2016] Huang, J. and Abadi, D. (2016). LEOPARD: Lightweight

edge-oriented partitioning and replication for dynamic graphs. PVLDB, 9(7).

[Karger et al., 1997] Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M.,

and Lewin, D. (1997). Consistent hashing and random trees: Distributed caching

protocols for relieving hot spots on the World Wide Web. In STOC, pages 654–663.

[Karger and Ruhl, 2004] Karger, D. R. and Ruhl, M. (2004). Simple efficient load

balancing algorithms for peer-to-peer systems. In SPAA.

[Kenthapadi and Manku, 2005] Kenthapadi, K. and Manku, G. S. (2005). Decentral-

ized algorithms using both local and random probes for P2P load balancing. In

SPAA.

[Kwak et al., 2010] Kwak, H., Lee, C., Park, H., and Moon, S. (2010). What is

Twitter, a social network or a news media? In WWW.

[Lang and Patel, 2010] Lang, W. and Patel, J. M. (2010). Energy management for

MapReduce clusters. PVLDB, 3(1):129–139.

Bibliography 41

[Leverich and Kozyrakis, 2010] Leverich, J. and Kozyrakis, C. (2010). On the energy

(in)efficiency of Hadoop clusters. Operating Systems Review, 44(1):61–65.

[Li and Venugopal, 2013] Li, H. and Venugopal, S. (2013). Efficient node boot-

strapping for decentralised shared-nothing key-value stores. In Middleware, pages

348–367.

[Malkhi et al., 2002] Malkhi, D., Naor, M., and Ratajczak, D. (2002). Viceroy: A

scalable and dynamic emulation of the butterfly. In PODC, pages 183–192.

[Margo and Seltzer, 2015] Margo, D. and Seltzer, M. (2015). A scalable distributed

graph partitioner. PVLDB, 8(12):1478–1489.

[Meusel et al., 2014] Meusel, R., Vigna, S., Lehmberg, O., and Bizer, C. (2014).

Graph structure in the Web — revisited: A trick of the heavy tail. In WWW.

[Mirrokni et al., 2018] Mirrokni, V., Thorup, M., and Zadimoghaddam, M. (2018).

Consistent hashing with bounded loads. In SODA, pages 587–604.

[Naor and Wieder, 2007] Naor, M. and Wieder, U. (2007). Novel architectures for P2P

applications: The continuous-discrete approach. ACM Trans. Algorithms, 3(3):34.

[Nguyen et al., 2013] Nguyen, H., Shen, Z., Gu, X., Subbiah, S., and Wilkes, J.

(2013). AGILE: Elastic distributed resource scaling for infrastructure-as-a-service.

In ICAC.

[Nicoara et al., 2015] Nicoara, D., Kamali, S., Daudjee, K., and Chen, L. (2015). Her-

mes: Dynamic partitioning for distributed social network graph databases. In EDBT.

[Petroni et al., 2015] Petroni, F., Querzoni, L., Daudjee, K., Kamali, S., and Iacoboni,

G. (2015). HDRF: Stream-based partitioning for power-law graphs. In CIKM.

[Pujol et al., 2010] Pujol, J. M., Erramilli, V., Siganos, G., Yang, X., Laoutaris, N.,

Chhabra, P., and Rodriguez, P. (2010). The little engine(s) that could: Scaling

online social networks. In SIGCOMM, pages 375–386.

[Raab and Steger, 1998] Raab, M. and Steger, A. (1998). “Balls into bins” - A simple

and tight analysis. In RANDOM’98, pages 159–170.

[Ratnasamy et al., 2001] Ratnasamy, S., Francis, P., Handley, M., Karp, R. M., and

Shenker, S. (2001). A scalable content-addressable network. In SIGCOMM.

Bibliography 42

[Sajjad et al., 2016] Sajjad, H. P., Payberah, A. H., Rahimian, F., Vlassov, V., and

Haridi, S. (2016). Boosting vertex-cut partitioning for streaming graphs. In

BigData Congress.

[Schloegel et al., 1997] Schloegel, K., Karypis, G., and Kumar, V. (1997). Multilevel

diffusion schemes for repartitioning of adaptive meshes. J. Parallel Distrib.

Comput., 47(2):109–124.

[Shang and Yu, 2013] Shang, Z. and Yu, J. X. (2013). Catch the wind: Graph

workload balancing on cloud. In ICDE.

[Stoica et al., 2001] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Bal-

akrishnan, H. (2001). Chord: A scalable peer-to-peer lookup service for internet

applications. In SIGCOMM, pages 149–160.

[Valiant, 1990] Valiant, L. G. (1990). A bridging model for parallel computation.

Commun. ACM, 33(8):103–111.

[Vaquero et al., 2014] Vaquero, L. M., Cuadrado, F., Logothetis, D., and Martella, C.

(2014). Adaptive partitioning for large-scale dynamic graphs. In ICDCS.

[Walshaw et al., 1997] Walshaw, C., Cross, M., and Everett, M. G. (1997). Parallel

dynamic graph partitioning for adaptive unstructured meshes. J. Parallel Distrib.

Comput., 47(2):102–108.

[Wang et al., 2012] Wang, W., Chen, H., and Chen, X. (2012). An availability-aware

virtual machine placement approach for dynamic scaling of cloud applications. In

UIC/ATC, pages 509–516.

[Xie et al., 2014] Xie, C., Yan, L., Li, W.-J., and Zhang, Z. (2014). Distributed

power-law graph computing: Theoretical and empirical analysis. In NIPS.

[Xin et al., 2013] Xin, R. S., Gonzalez, J. E., Franklin, M. J., and Stoica, I. (2013).

GraphX: A resilient distributed graph system on Spark. In GRADES, page 2.

[Xu et al., 2014] Xu, N., Chen, L., and Cui, B. (2014). Loggp: A log-based dynamic

graph partitioning method. PVLDB, 7(14):1917–1928.

[Yu and Cai, 2016] Yu, L. and Cai, Z. (2016). Dynamic scaling of virtual clusters

with bandwidth guarantee in cloud datacenters. In INFOCOM, pages 1–9.

Bibliography 43

[Zhang et al., 2017] Zhang, C., Wei, F., Liu, Q., Tang, Z. G., and Li, Z. (2017). Graph

edge partitioning via neighborhood heuristic. In KDD, pages 605–614.

[Zheng et al., 2016] Zheng, A., Labrinidis, A., and Chrysanthis, P. K. (2016). Planar:

Parallel lightweight architecture-aware adaptive graph repartitioning. In ICDE,

pages 121–132.

Appendix A

Appendix: Proofs and Details

A.1 Proof of Theorem 1

To prove Theorem 1, we first study MIN-VC, a vertex-cut version of k-cut prob-

lem [Goldschmidt and Hochbaum, 1994]. Given a graph G, a number k and a replica-

tion factor f ≥ 1, it asks whether there exists a vertex-cut k-partition Π(k) of G with

∂(Π(k))≤ f . Assume w.l.o.g. that no fragment of Π(k) is empty.

Lemma 1: MIN-VC is NP-complete. 2

Proof: Clearly MIN-VC is in NP. We show that MIN-VC is NP-hard by reduction

from the maximum clique problem. Given a graph G = (V,E) and a number k, the

latter problem asks whether G has a k-clique, i.e., a clique of size k. To simplify the

discussion we assume w.l.o.g. that |E| ≥
(k

2

)
.

Claim. G has a k-clique iff G has a vertex-cut k∗-partition Π(k∗) with ∂(Π(k∗)) ≤
k+2(k∗−1)
|V | , where k∗ = |E|+1−

(k
2

)
.

(⇒) Assume that G has a k-clique. Then there exists a k∗-partition that puts the edges

of the k-clique in a fragment, and the rest k∗−1 edges in the other fragments one by

one.

(⇐) Assume that there exists a partition Π(k∗)= (E1, . . . ,Ek∗) of G such that ∂(Π(k∗))≤
k+2(k∗−1)
|V | . We show that G has a k-clique. Denote by V1, . . . , Vk∗ the vertex sets of E1,

. . . , Ek∗ , respectively. We pick one edge ēi for each Ei, 1≤ i≤ k∗, and let ēi = (ui,vi),

Vi =Vi \{ui,vi}, and Ei = Ei \{ēi}. By assumption we have that ∑
k∗
i=1 |Vi| ≤ k−2. Let

E =
⋃k∗

i Ei. Then |E|=
(k

2

)
−1.

44

Appendix A. Appendix: Proofs and Details 45

In the following we show that there exists some t ∈ [1,k∗] such that E ∪{ēt} forms

a k-clique in G. To see this, one can construct an auxiliary graph G∗ = (V ∗,E∗) from

G by treating the nodes in Vi’s as distinct ones and merging all ui’s and vi’s into two

mega vertices u∗ and v∗, respectively. Observe that |V ∗| = ∑
k∗
i=1 |V i|+ 2 ≤ k and

|E∗|= |Ē|+1=
(k

2

)
. Hence |V ∗|= k and G∗ is a k-clique. It follows that (a) V i∩V j = /0

for i 6= j; and (b) all edges in E are in the same fragment, say Et .Then Et , i.e., E∪{ēt},
forms a k-clique. 2

Proof of Theorem 1. Given a n-partition Π(n) of G and a new (n+k)-partition Π(n+k),

one can compute the balance factor ε, replication factor f of Π(n+ k) and migration

cost m from Π(n) to Π(n+ k) in polynomial time. This implies that DS, DS(f ,m) and

DS(ε, f) are all in NP.

(1) For the lower bounds, it suffices to show that DS(f ,m) and DS(ε, f) are NP-hard,

since DS(f ,m) and DS(ε, f) are special cases of DS. We assume w.l.o.g. that k = 1.

The reductions can be revised accordingly for any fixed k.

(i) We show that DS(f ,m) is NP-hard by reduction from MIN-VC. Given a graph

G′=(V ′,E ′), a number k′, and a replication factor f ′, we construct an instance of

DS(f ,m) as follows: G=G′, n=k′−1, k=1, m=|E ′|, f= f ′ and the initial n-partition

Π(n) is constructed by assigning one edge to each of the first n−1 partitions and the

rest of the edges to the n-th partition. Clearly G′ has a k′-partition with replication

factor smaller than f ′ if and only if there exists a new partition Π(n+k) of G such that

∂(Π(n+ k))≤ f and the migration cost from Π(n) to Π(n+ k) is bounded by m.

(ii) We show that DS(ε, f) is NP-hard by reduction from the 3-Partition Problem,

which is NP-complete [Garey and Johnson, 1979]. Given 3t integers a1, . . . , a3t and a

threshold S such that S/4 < ai < S/2 and ∑
m
i=1 ai = tS, it asks whether the numbers can

be partitioned into t triples such that each triple adds up to S. It remains NP-complete

when a1, . . . , a3t are unary.

Given an instance of the 3-Partition Problem, we construct an instance of DS(ε, f),

which consists of a graph G, an initial partition Π(n), a number k, a balanced factor ε

and a replication factor f defined as follows:

◦ G is composed of m disjoint stars; more specifically, for each ai, we add a vertex

vi and ai additional vertices ui,1 . . . , ui,ai , and connect vi to each ui, j;

Appendix A. Appendix: Proofs and Details 46

◦ n = t−1 and Π(n) is constructed similarly to (i);

◦ k = 1, i.e., we increase the partition number by 1; and

◦ ε = 0 and f = 1, i.e., we require that Π(n+k) is perfectly balanced and no vertex

is cut.

One can see that there exists a desired new partition Π(n+ k) for DS(ε, f) iff there

exists a 3-partition of a1, . . . , a3t .

(2) A PTIME algorithm for DS(ε,m) is as follows. Each time it moves one edge from

the maximum partition to the minimal one until either (i) the current balance factor

is no larger than ε; or (ii) the migration cost exceeds bound m. If (i) happens then it

returns “yes”; otherwise it returns “no”.

We now give a PTIME algorithm for DS(f ,m), when both k and n are fixed and

m is ∞ (unrestricted). Note that in a partition Π(n+ k) with the minimum replication

factor, the number of cut vertices, i.e., vertices that occur in more than one fragment,

is bounded by 2(n+ k). Given graph G = (V,E), the algorithm computes the mini-

mum replication factor by enumerating all possible partitions. Suppose that G has m1

connected components. It works as follows.

(a) If m1 ≥ n+ k, then return “yes”; otherwise continue.

(b) Check whether removing one vertex from G can result in at least n+ k connected

components; if not, continue; otherwise check whether 1 + n+k−m1
|V | ≤ f ; if so,

return “yes”; otherwise, return “no”.

(c) Enumerate all subsets V1 of V such that |V1| ≤ 2(n+ k). For each such subset,

cut these nodes from G, and check whether from the cut graph we can deduce a

partition such that the replication factor is no larger than f . If so, return “yes”;

otherwise, if the replication factor is larger than the threshold f for any subset V ,

then return “no”.

Since n+ k is a constant, the algorithm is in PTIME. Indeed, the number of possible

partitions in (c) is bounded by a constant 24(n+k)2
. The correctness is ensured by the

following: (i) the minimum replication factor of (a) and (b) is 1 and 1+ n+k−m1
|V | , re-

spectively; and (ii) the minimum replication factor for (n+k)-partitions is bounded by

1+ 2(n+k)
|V | . 2

Appendix A. Appendix: Proofs and Details 47

A.2 Proof of Lemma 2

Let L1, . . . , Ln1 be the locations on the stack from bottom to top. We refer to the fol-

lowing property as stack invariant: for any j ∈ [1,n1], the interval invariant holds when

placing j fragments at locations L1,. . . , L j, respectively. The stack invariant implies

the interval invariant since the latter only concerns the placement of n1 fragments at

L1, . . . , Ln1 .

To prove Lemma 2, we show that (a) the initial stack satisfies the stack invariant;

and (b) adding or removing fragments during scaling does not violate the stack invari-

ant.

(a) Let L1, . . . , Ln be locations from bottom to top on the initial stack, which correspond

to fragment removal sequence in the stack construction. Let I1, . . . , I j be intervals in

the clockwise order induced by L1, . . . , L j, and I1 and I2 be intervals proceeding and

succeeding L j, respectively. Removing L j will merge I1 and I2. We show the following:

I1 ≤ I2 ≤ ·· · ≤ I j, and I j ≤ 2I1. (?)

The stack invariant follows from (?) directly.

We prove property (?) by induction. Initially j = n and I1 = · · · = In, and thus (?)

holds. For the inductive step, suppose that (?) holds for j. We show that (?) holds for

j− 1. Since we remove fragments in an alternative manner, after removing L j, L j−1

is on the top of the stack, and is located between I3 and I4. To show (?), we prove

that I j ≤ I1 + I2 and I1 + I2 ≤ 2I3, because after removing L j, the intervals I1 and I2 are

merged to form the largest interval by (?). For I j≤I1 + I2 and I1 + I2≤2I3, note that

I j ≤ 2I1 ≤ I1 + I2 and I1 + I2 ≤ 2I2 ≤ 2I3 by the inductive hypothesis.

(b) Suppose that before removing or adding a fragment, the stack invariant holds.

Clearly removing a fragment does not violate the stack invariant since we simply pop

a location from the stack. We show that adding a fragment does not violate the in-

variant either. Let I′max and I′min (resp. Imax and Imin) be the lengths of the maximum

and minimum intervals before (resp. after) adding a fragment, respectively. Since

new fragments are added at the middle of the largest interval, and I′max ≤ 2I′min by the

hypothesis, we have that

Imax ≤ I′max ≤ 2× 1
2

I′max ≤ 2×min{1
2

I′max, I
′
min}= 2Imin.2

Appendix A. Appendix: Proofs and Details 48

A.3 More details of Example 4

We show how BVC+ extends the partition Π(2) of Example 2 to a new partition Π(5)=

(E1, . . . ,E5).

(1) Algorithm BVC+ first identifies 3 locations on the circle C to place the new frag-

ments E3, E4 and E5. At the beginning, there are only two intervals with the same

length induced by E1 and E2, located at 16 and 0, respectively, as shown in Fig. 4.3(1)

(note that we have 25 locations, labeled 0–31). BVC+ selects one of them and places

E3 at location 8. The largest interval then becomes the one between E1 and E2. BVC+

then places E4 at location 24, in the middle of E1 and E2. Now all intervals have length

8. BVC+ simply bisects one of them to place E5, e.g., at location 28.

(2) BVC+ then finds edges that belong to the new fragments, and moves them to the

right place. By consistent hashing, e4,1, e4,3, and e5,2 are closer to fragment E4, and

thus are moved from E2 to E4. It also moves e3,1, e3,2 and e3,5 from E1 to E3, and e5,3,

e6,1 and e6,5 from E2 to E5. We get E1 = {e1,1,e1,3,e2,2,e2,3}, E2 = {e2,4,e5,4,e5,5},
E3 = {e3,1,e3,2,e3,5}, E4 = {e4,1,e4,3,e5,2} and E5 = {e5,3,e6,1,e6,5}.

This yields balanced partition Π(5) shown in Fig. 1.1 (b).

A.4 Proof of Theorem 3

We first remark the following about Theorem 3.

(1) The lower bound βk for balance factor (a) is not very restrictive, (b) requires ε to

be larger than 1, and (c) incorporates k. These aim to bound the migration cost.

(a) Taking Twitter as an example (see Chapter 6), βk ≤ 0.009 for n = 64, where |E| is
approximately 1.5 billion. Indeed, in the real world it is common to find that |E| � n.

(b) When ε> 1, the cost in linear probing is quite small. Note that the expected number

of edges hashed to a fragment is proportional to the length of the interval preceding

the fragment, since its vertices are hashed independently. If the fragments on C are not

evenly distributed, it may incur heavy migration cost in the linear probing process to

restore balance. By the interval invariant, i.e., the largest interval is at most twice as

large as the smallest one, the maximum expected number of edges in a fragment is at

Appendix A. Appendix: Proofs and Details 49

most twice the average, and thus we can bound the migration cost.

(c) When adding k fragments and when k is large, the “capacity” of the fragments (the

maximum size allowed by an ε-balanced partition) decreases, and the chance that a

partition gets overfull increases. This increases the expected value of the migration

cost. To cope with this, we incorporate k into the lower bound βk for balance factor ε

to ensure that only a small number of edges need to be migrated.

(2) The interval invariant allows us to bound not only migration cost (see (1) above),

but also replication factor f . (a) Given the invariant, we can bound the probability of

edges hashed to fragments, and deduce a bound on f . (b) As remarked in (1), when

ε > 1+ 2βk, the migration cost during linear probing is quite small; that is, we can

avoid further degradation of partition quality when restoring balance.

Our bound on the replication factor f differs from the one of [Xie et al., 2014] by

a small factor 2η

|V | . The factor comes from the effort to balance fragments, which is not

ensured by [Xie et al., 2014].

(3) Edge selection in linear probing affects neither migration cost [Mirrokni et al.,

2018] nor the upper bound for replication factor.

(4) The bound for migration cost holds on general graphs, but not the expected repli-

cation factor fe. On a power-law graph G, fe of degree-bashed hashing would decrease

when G gets more skewed [Xie et al., 2014]; this does hold on general graphs.

Proof. We next show the bounds on migration cost and the replication factor when

removing or adding |k| fragments.

Migration cost. We first bound the total migration cost.

(A) Removing fragments. We start with the migration cost of BVC−. More specifically,

we show that to remove |k| fragments, we need to move at most O(|k| |E|n) edges.

The migration cost for removing fragments consists of (1) the cost for moving

edges from removed fragments to other fragments; and (2) the cost for rebalancing the

fragments.

For (1), since each fragment has at most d(1+ ε) |E|n e edges, and |k| fragments are

to be removed, O(|k| |E|n) edges are moved from removed fragments to other fragments.

Thus the migration cost for (1) is bounded by O(|k| |E|n).

Appendix A. Appendix: Proofs and Details 50

For (2), it suffices to show that the expected number of edges in Ei to be forwarded

is bounded by O(1
(n+k)2). For if it holds, then the expected migration cost is bounded

by O(1
n+k) since each edge can be moved at most n+ k steps. Since there exist n+

k fragments, the total migration cost is bounded by O(1), i.e., bounded by a small

number.

To show the bound O(1
(n+k)2), let X j be the number of edges hashed to Ei when

hashing edges e j ∈E. Then the number of edges hashed to Ei is X1+ . . .+X|E|, denoted

by X . Let ek1
l
, . . . ,ek

tl
l

be all the edges that are hashed by vl to the same fragment, since

we adopt degree-based hashing. Let Yl = Xk1
l
+ . . .+ Xk

tl
l
. Since each edge can be

hashed by only one vertex, X can be rephrased as Y1 + . . .+Y|V |. Moreover, since

vertices are hashed independently, Y1, . . . , and Y|V | are independent. Denote by hvl the

number of edges hashed by vl and let hmax = max{hv}
|V |
v=1.

Now we show the bound on the expected number of moved edges. Denote d(1+
ε) |E|n+ke by B. Since Ei contains at most B edges, we know that E[X] can be bounded

by

Σ
|E|−B
l=0 l×Pr[X = B+ l]≤ Σ

|E|
l=0 Pr[X > B+ l]≤ Σ

|E|
l=0 Pr[X > B].

We next bound ∑
|E|
l=0 Pr[X >B]. To this end, we use the Bernstein’s inequality [Dub-

hashi and Panconesi, 2009], which states: if Y1, . . . ,Y|V | are independent from each

other, and if Y j−E[Y j]≤ b for a constant b with j ∈ [1, |V |], then for any t > 0,

Pr[X > E[X]+ t]≤ exp(−t2/(2σ
2 +

2bt
3

)),

where σ2 = ∑
|V |
1 σ2

j is the variance of X .

To use this inequality, we show the following: (a) E[X] satisfies that Imin
|E|

2c−1 ≤
E[X] ≤ Imax

|E|
2c−1 , by the interval invariant; here Imin (resp. Imax) is the size of the

minimum (resp. maximum) interval, and 2c − 1 is the size of the circle; and (b)

the variance σ2 ≤ ∑
|V |
j=1

Imax
2c−1h2

j ≤
Imax|E|hmax

2c−1 and Yj−E[Y j] ≤ hmax. By ε > 1+ 2βk,

βk =
√

β1
k(
√

β1
k +
√

2) and β1
k =

8(n+k)hmax log((n+k)
√
|E|+1)

|E| , (ε−1
2)2 > β1

k(2+
ε−1

2). By

Bernstein’s inequality [Dubhashi and Panconesi, 2009], we can deduce the following:

Pr[X > B] ≤ Pr[X > (1+(ε−1)/2)E[X]]

≤ exp(−
(ε−1

2 E[X])2

2σ2 +
2hmax(

ε−1
2 E[X])

3

)

≤ 1/((n+ k)2× (|E|+1)).

Appendix A. Appendix: Proofs and Details 51

Thus ∑
|E|
l=0 Pr[X >B]≤(|E|+1) 1

(n+k)2(|E|+1) ≤O(1
(n+k)2). Hence, ∑

|E|−B
l=0 l×Pr[X =

B+ l]≤ O(1
(n+k)2).

Putting these together, we know that the expected moving cost for removing |k|
fragments is bounded by O(|k| |E|n).

(B) Adding fragments. Next, we show that to add k fragments, we need to move at

most O(k |E|n+k) edges.

Similar to BVC−, the migration cost of algorithm BVC+ consists of (1) the cost to

move edges from old fragments to new fragments; and (2) the cost to balance frag-

ments. The proof of (2) is similar to BVC−; we omit its details here.

For (1), the analysis is almost the same as that of BVC−, except that when k� n,

it is possible that many new fragments are added between two old fragments. In this

case, we send the edges directly to the fragments, rather than forward them by linear

probing. Since the interval variant holds, the expected number of edges in each new

fragment is in O(|E|n+k). Hence the expected number of edges moved from old fragments

to the new ones is in O(k |E|n+k) = O(k |E|n+k).

Putting these together, we know that the expected moving cost of algorithms BVC+

and BVC− is bounded by O(k |E|n).

Replicated factor. Now we show the bound on the replication factor f after scaling as

stated in Theorem 3.

We first review a result established in [Xie et al., 2014]. For a graph, suppose that

the minimum degree of its vertices is dmin, and the degrees of the graph follow a power-

law distribution Pr(dv = d) = (α−1)dα−1
min d−α for any vertex v in the graph, where α

is a positive constant and d ≥ dmin, and each vertex is hashed by itself once. Then the

expected number of vertices hashed to a fragment Ei is bounded by |V |(1− (1− pi)
θ),

where θ = dmin× (α−1)2

(α−2)(2α−3) +
1
2 , and pi is the probability that a vertex is hashed to

Ei.

Using this result, we show the bound on the expected replication factor of Algo-

rithms BVC− and BVC+. To this end, we only need to bound the expected number of

vertices in a fragment Ei, denoted by xi, after BVC− and BVC+ are executed. Let xi
h

and xi
f be the number of vertices hashed to Ei and the number of vertices forwarded to

Ei, respectively. Then xi ≤ xi
h + xi

f and E[xi]≤ E[xi
h]+E[xi

f].

We now bound E[xi
h] and E[xi

f]. For E[xi
h], since we evenly place the fragments,

the probability that a vertex is hashed to a fragment E i
i is bounded by 21

n , which is

Appendix A. Appendix: Proofs and Details 52

Algorithm ParBVC+

Input: Π(n) and ε as in ParBVC−, and a number k > 0.

Output: A new partition E1, . . . ,En+k of G.

1. identify k locations L1, . . . , Lk for fragments to plug in;

2. add k new fragments En+1, . . . , En+k at location L1, . . . Lk;

3. for i ∈ [1,n], each Pi works on Ei in parallel do

4. for each e ∈ Ei do /* superstep */

5. i∗ = next par(e.hash,C); /* find the next fragment on C */

6. if i∗ ∈ {n+1, . . . ,n+ k} then

7. move e to fragment Ei∗ ;

8. for i ∈ [1,n], each Pi works on Ei in parallel do /* superstep */

9. balance Ei by linear probing;

Figure A.1: Algorithms ParBVC+

ensured by the interval invariant. By the results of [Xie et al., 2014] above, E[xi
h] is

at most |V |(1− (1−21
n)

θ). For E[xi
f], after one step of movement, only one fragment

increases its number of vertices by 2 at most. By the bound on the migration cost given

above, there exists a constant η such that we need at most η steps of balancing. Thus

∑
n
i=1 E[xi

f] is bounded by 2η.

Taken together, the expected replication factor is at most n× |V |(1−(1−2 1
n)

θ)

|V | + 2×η

|V | =

n(1− (1−21
n)

θ)+ 2η

|V | . 2

A.5 Pseudo Code of ParBVC+

Figure A.1 shows the details of algorithm ParBVC+ (Section 4.3). Given a hash-based

partition Π(n) of a graph G, a balance factor ε and a number k > 0, ParBVC+ scales

out Π(n) to a new ε-balanced partition Π(n+k) as follows. It first identifies k locations

and plugs in k fragments just like BVC+ (lines 1-2). It then identifies edges that belong

to the fragments, and moves them to the right place, in parallel (lines 3-7). Finally, it

balances the fragments via linear probing in parallel as in BVC+ (lines 8-9).

Appendix A. Appendix: Proofs and Details 53

Algorithm ParBVC−

Input: Π(n) = (E1, . . . ,En) of G, −n < k < 0 and ε as in BVC−.

Output: A new partition (E ′1, . . . ,E
′
n+k) of G.

1. identify and remove k fragments E j1 , . . . E jk from unit circle C ;

2. for i ∈ [1,k], each P ji works on E ji in parallel do

3. for each e in E ji do /* superstep */

4. migrate e as in ParBVC+;

5. {E ′1, . . . ,E ′n+k}← {E1, . . . ,En}\{E j1 , . . . ,E jk};
6. balance E ′1, . . . , E ′n+k in parallel as in Algorithm ParBVC+;

Figure A.2: Algorithms ParBVC−

A.6 Pseudo Code of ParBVC−

Algorithm ParBVC− for scaling in is shown in Fig. A.2. Given a partition Π(n) of

graph G placed on a unit circle C , a balance factor ε and a number −n < k < 0,

ParBVC− scales in Π(n) to an ε-balanced partition Π(n+ k). Like BVC−, it first iden-

tifies k fragments and removes them from the circle C , also using a stack (line 1). It

then migrates the edges from the removed fragments. As opposed to BVC−, ParBVC−

conducts this step in parallel: for each removed fragment E ji , its worker Pji migrates

edges in E ji (line 2-4). Finally BVC− balances the resulting partition, in parallel via

linear probing as in ParBVC+ (lines 5-6).

A.7 Proof of Proposition 4

For VP+, since at most k|Ei|
n+k edges are moved to new fragments from each fragment Ei,

one can conclude that the migration cost of VP+ is bounded by k|E|
n+k .

For VP−, since we remove all edges from the selected |k| fragment, and the number

of edges in each fragment is in O(|E|n), the migration cost of VP− is at most O(|k||E|n). 2

Appendix A. Appendix: Proofs and Details 54

A.8 Proof of Proposition 5

By the definition, the replication factor is the sum of the replication factors of the

original fragments and that of the new fragments. Since some edges are removed from

the original fragments, the replication factor of these fragments is still bounded by F

after dynamic scaling. It remains to bound the replication factor of the new fragments.

To this end, since this part of replication factor is the result of dividing the number

of vertices in the new fragments by the total number |V | of vertices, we only need

to bound the number of vertices in the new fragments. (a) Since these vertices are

selected from the original fragments, we first analyze how many vertices are selected.

We bound this number by k
n+k

2|E|
τi

. Denote by E ′i the selected edges from Ei; then v(E ′i)

is the set of selected vertices in E ′i . By the edge selection strategy, we select k
n+k |Ei|

edges from Ei such that the number of vertices in the selected edges is minimum.

Hence |v(E ′i)| must be no larger than the average number of vertices in any k
n+k |Ei|

edges in Ei, which is k
n+k

2|Ei|
τi

. Therefore, the number of vertices in E ′i is no larger

than k
n+k

2|Ei|
τi

. Then the total number of vertices in the selected edges over all original

fragments is bounded by k
n+k

2|E|
min{τi}n

i=1
. (b) Moreover, because each selected vertex can

be assigned to at most k new fragments, the total number of vertices in k new fragments

is bounded by k k
n+k

2|E|
min{τi}n

i=1
. Putting these together, we have that the replication factor

after VP+ is bounded by

F + k · k
n+ k

2|E|
min{τi}n

i=1 · |V |
. 2

A.9 Proof of Proposition 6

By its definition, the replication factor of the resulting partition is the sum of the repli-

cation factor of n remaining fragments Π(n)′ = (E ′′1 , . . . ,E
′′
n) and that of the partition

Π(k) of k new fragments with selected edges E ′1, . . . ,E
′
n. It is easy to verify that the

replication factor of Π(n)′ is at worst f ′′. It remains to bound the replication factor of

Π(k).

Below we show the result for the score-based strategy first, followed by the timestamp-

based strategy.

Score-based strategy. To bound the replication factor of the partition Π(k) of k new

fragments, we bound the number of vertices in Π(k). Similar to the proof of Propo-

sition 5, observe that (a) the number of vertices in E ′i is no larger than 2k
n+k |Ei|, and

Appendix A. Appendix: Proofs and Details 55

then the total number of vertices in the selected edges over n fragments is bounded by
2k

n+k |E|; and moreover, (b) because each selected vertex can be assigned to at most k

new fragments, the total number of vertices in Π(k) is bounded by k 2k
n+k |E|. Putting

these together, we have that the replication factor after VP+ is bounded by

f ′′+
2k2

n+ k
|E|.

Timestamp-based strategy. Similar to the proof above, we need to bound the replica-

tion factor of Π(k). Below we first review the assignment rules of HDRF, and identify

cases we need to analyze. Based on these cases, we then prove that the replication fac-

tor is bounded by f ′+ k
n+k

|E|
|V |−

|V1|
2·|V | , where V1 is the number of vertices in the selected

edges.

HDRF cases. To identify the cases, we first review the rules of assigning edges in

HDRF [Petroni et al., 2015]. When λ = 1, given an edge (u,v), HDRF applies the

following four rules.

(Rule 1). If none of u and v appears in the new fragments, then (u,v) is assigned to the

fragment with the smallest size.

(Rule 2). If only u (resp. only v) appears in the new fragments, then the edge (u,v) is

assigned to the fragment that contains u (resp. v) and has the smallest size.

(Rule 3). If there exist fragments containing both u and v, then the edge (u,v) is

assigned to such a fragment that contains both u and v, and has the smallest size.

(Rule 4). If both u and v appear in the new fragments, and there does not exist a

fragment containing both u and v, then the edge (u,v) is assigned as follows: (i) when

the degree of u is smaller than that of v, the edge (u,v) is assigned to such a fragment

that contains u and has the smallest size. (ii) otherwise, the edge (u,v) is assigned to

such a fragment that contains v and has the smallest size.

When there exist multiple fragments satisfying the requirements, we randomly se-

lect one and assign the edge to it.

Then based on the changes of the edge assignment during dynamic scaling, we

have the following cases.

Consider case F in Table A.1. It means that before dynamic scaling, edge (u,v)

is assigned by rule 3 above, but during the dynamic scaling, this edge is assigned by

Appendix A. Appendix: Proofs and Details 56

Table A.1: Changes of the edge assignment rules

rule 1 rule 2 rule 3 rule 4

rule 1 A × × ×
rule 2 × B × ×
rule 3 × × D F

rule 4 × C E G

using rule 4. The other cases can be interpreted similarly.

Some cases do not happen (marked ×). For example, an edge (u,v) that is initially

assigned by rule 1 cannot be reassigned by rule 3. Indeed, if (u,v) is initially assigned

by rule 1, it is the first time that vertices u and v appear in the stream. Since we select

edges based on timestamps of edges, u and v cannot appear in the new fragments be-

fore the assignment of (u,v). Hence we cannot use rule 3 to assign this edge. Similarly

we interpret other cases that do not happen.

Analysis of the upper bound. Using Table A.1, we can show that when reassigning the

edges, the replication factor cannot increase more than k
n+k |E|−

|V1|
2 . That is, the repli-

cation factor of the partition Π(k) is no larger than f ′+ k
n+k

|E|
|V | −

|V1|
2·|V | . More specif-

ically, we show that the change of replication factor in all the cases in Table A.1 is

either no larger than f ′ or no larger than k
n+k

|E|
|V | −

|V1|
2·|V | .

We group and analyze the cases as follows.

(1) For cases A, B, D and G, since the assignment rules for these edges are the same,

the changes of the replication factor remain the same before and during the dynamic

scaling. Then this part of replication factor is bounded by f ′.

(2) For case C, it happens when (i) both u and v have been assigned before handling

(u,v), and are in different fragments before dynamic scaling; and (ii) only one of them

has been assigned before handling the edge (u,v) during dynamic scaling. Since both

rule 2 and rule 4 increase the replication factor by 1
|V | , we know that the replication

factor after dynamic scaling for this case is bounded by f ′.

(3) For case E, the replication factor is increased by one during the original partitioning

by using rule 4, but it will remain the same during dynamic scaling by using rule 3.

This the replication factor for this case is bounded in f ′.

Appendix A. Appendix: Proofs and Details 57

ParBVC
+/-

CH

2DHash

Libra

HDRFT
+

GreedyT
+

HDRFS
+

GreedyS
+

HDRFR
+

GreedyR
+

HDRF
-

Greedy
-

HDRF

Greedy

LEC

 8

20 40 60 80 100

R
ep

li
ca

ti
o
n
 F

ac
to

r

(a) Varying k (scale out, Twitter)

 4

 8

20 40 60 80 100

R
ep

li
ca

ti
o
n
 F

ac
to

r

(b) Varying k (scale out, PLD)

Figure A.3: Replication factor

(4) For case F, it happens when both u and v have been reassigned before assigning the

edge (u,v). Moreover, they are in the same fragment before dynamic scaling, but in

different fragments during the scaling. Since (i) rule 4 only adds one new vertex, (ii)

this case happens when v1 and v2 have been assigned, and (iii) reassigning |V1| vertices

needs at least |V1|
2 edges, we know that the total number of new copies of the vertices

in case F is at most k
n+k |E|−

|V1|
2 .

Putting these together, we know that the replication factor after HDRF+ is bounded

by f ′+ f ′′+ k
n+k

|E|
|V | −

|V1|
2·|V | . 2

A.10 More Experimental Results

We next report more experiment results.

Replication factor. Fixing n = 96, we varied k from 20 to 100 (resp. 10 to 50) for

scaling out (resp. in) on Twitter and PLD. The results are shown in Figures A.3(a)

and A.3(b).

(1) HDRF+ still delivers the best replication factor. On average, it outperforms Greedy+,

ParBVC+ and CH by 1.2, 1.3 and 3.7 times, respectively, up to 1.3, 1.4 and 4.2 times.

(2) HDRF+ also does better than re-partitioning approaches Libra, 2DHash and Greedy

on average by 1.3, 1.7 and 1.2 times, respectively, up to 1.4, 1.9 and 1.3 times.

(3) Algorithms ParBVC+ and Libra outperform the other hash-based algorithms CH

Appendix A. Appendix: Proofs and Details 58

and 2DHash by 2.9 and 1.4 times, respectively, up to 3.5 and 1.6 times. ParBVC+

and Libra have comparable replication factors since they both adopt the degree-based

approach to improve locality.

(4) The results of scaling in are consistent (not shown).

Edge selection strategy. To evaluate the effectiveness of edge selection strategies for

HDRF+ and Greedy+, we also implemented a strategy that randomly chooses edges

for scaling out, denoted by HDRF+R and Greedy+R , respectively.

(1) As shown in Figures 6.1(i)-6.1(n), HDRF+T achieves the best replication factor

among the scaling out algorithms derived from HDRF. On average it outperforms

HDRF+S and HDRF+R by 1.2 and 1.6 times, respectively, up to 1.4 and 1.8 times. As

remarked earlier, HDRF+T even has a slight better replication factor than HDRF in most

cases. This verifies the effectiveness of the timestamp-based strategy.

(2) The replication factor of HDRF+S is also comparable to that of HDRF. On average

it is 11.9% larger than that of HDRF, up to 18.1%. Moreover, HDRF+S has better

efficiency and migration cost than HDRF as we have seen in Exp-1.

(3) The balance factors of HDRF+T and HDRF+S are as good as that of HDRF since they

use the same balancing mechanism.

(4) The results of the timestamp-based and score-based Greedy+ are consistent with

HDRF+. On average, Greedy+T is slightly better than Greedy+S and Greedy in replica-

tion factor, and is 1.6 times better than Greedy+R , up to 1.8 times.

These demonstrate the score-based and timestamp-based strategies perform well

for stream partitioners.

